

CS520 Principles of Programming Languages
Dr. Christian Collberg

Final Exam
May 14th, 2008

Raquel Torres Peralta
Federico Miguel Cirett Galán

History of Python
Python was designed by Guido van Rossum in the late 80's and early 90's. The name

'Python' is based on the famous BBC TV series of the 70's Monty Python Flying Circus. 1 Guido is
a fan of this long ousted show, and the code examples in the documentation and tutorials of
Python have plenty of references to it.

Rossum worked in the mid 80's in the programming language ABC, which targets
computer-illiterate students, with a syntax that is easy to write. However, it was designed to
write trivial programs. It had no I/O interactivity and no extensibility.

By 1986, van Rossum was working in the Amoeba distributed operating system project at
CWI (Centrum voor Wiskunde en Informatics), and by the end of the decade, he realized that
the project needed a merger between ABC and a shell script to do some administrative tasks in
the Amoeba OS, since neither sufficed alone. So, in the Christmas break of 1989, he wrote the
first draft of Python in only two weeks, borrowing some ideas from ABC, Modula-2 and Modula-
3, with the goal in mind of a general-purpose scripting language that would help him with the
Amoeba tasks. 2

It took him over a year to have a working kit and in 1991 he released Python 0.90 to the
USENET with a General Public License (GPL).

Python
Python is a very high level scripting multi-paradigm programming language; it supports

object-oriented programming, structured programming, and functional programming.3 It was
designed with simplicity in mind. To improve the experience of the programmers with it, Python
has the philosophy that "There should be one -and preferably only one- obvious way to do it".4
As Python is a scripting language, the source files are run without compiling. The interpreter
converts source code into bytecode just before run-time.

It is also possible to "pre-compile" a source file of python, but it will run at the same speed
of a non-compiled file, because the bytecode will be the same. The only difference will be the load
time, as the precompiled bytecode will be shorter than the source file.

If invoked without arguments, the Python interpreter runs as an interactive shell. The
other running mode of Python is as an underlying runtime library. It is invoked with the Python
binary and one or more modules, and a Python file to run.

Multiplatform
There are Python engines for every major computing platform in the market, including

Windows, Linux, Unix, MacOS, PalmOS, OS/2, Amiga, and more. There's no need to modify a
single line of code or to precompile again a bytecode file in order to run it in a different platform
than the original. There are some caveats: the version of the interpreter must be the same, and
there must be no calls to OS dependent modules.

1 About Python. 2008. http://www.python.org/about/ [Retrieved on April, 2008]

2 Interview with Guido van Rossum (July 1998) http://www.amk.ca/python/writing/gvr-interview [Retrieved
on April, 2008]

3 Wikipedia. Python programming language . 2008.
http://en.wikipedia.org/wiki/Python_(programming_language) [Retrieved on April, 2008]

4 PETERS, Tim. The Zen of Python. 2004. http://www.python.org/dev/peps/pep-0020/ [Retrieved on May
2008]

Semantics
Python semantics are very simple: functions and procedures are defined with a 'def'

statement, plus the function name, arguments in parenthesis and a colon (:) at the end.

Flow control statements inside must be space indented and terminated with a colon, with
all its enclosed statements indented.

This makes Python code very readable, almost as clear as plain English, with the added
benefit that it is easier for the programmer to get his job done, as there are fewer characters to
type.

Types and Objects

In Python everything is an object. Types are not an exception. When a variable is defined,

an instance of its type is created. The type of an object cannot be changed once it’s created, and
sometimes, depending on its type, its value also cannot be changed. When the value of an object
cannot be modified, it is said that the object is immutable. This is the case of tuples, numbers
and strings. 5

Since variables work as pointers to actual typed objects, they can change their type multiple

times during the execution of the program.6
>>>x=1 # An int object is created. X points to it.
>>>type(x)
<type ‘int’>
>>>x=’Python’ # A string object is created and x now points to it .
>>>type(x)
<type ‘str’>

Data types

The language offers a set of built-in types to make our life easier. Among them, there is a
set of sequence types: list, dictionary and tuples (a string is a tuple of chars). Also, different types
can be defined in modules, even in other language like C, to be used as Python types.

Some Data Types Available in Python 7

Data type Description and examples

Complex real and imaginary parts written as 3 + 4j or 1.23 - 0.0073j

Char. string ordered collection of characters, enclosed by pairs of ', or " characters

List ordered collection of objects, like [1,22,[321,'cow'],'horse']

Dictionary collection of associated key:data pairs like {'first':'alpha', 'last':'omega'}

Tuples similar to lists, like ('hen','duck',('rabbit','hare'),'dog','cat')

File disk files as in: file1 = open('data.01','r'); data = file1.read()

5 ROSSUM, Guido van. Python Reference Manual - Objects, values and types
http://docs.python.org/ref/objects.html [Retrieved on April, 2008]

6 BRUNNER, Robert.. “Discover Python, Part 1: Python's built-in numerical types”.
http://www.ibm.com/developerworks/opensource/library/os-python1/

7 DYER , Charles. The Python Programming Language. 2002.
http://pathfinder.scar.utoronto.ca/~dyer/csca57/book_P/node16.html [Retrieved on April, 2008]

In Python, variables don’t need to be defined before use. In fact, a variable doesn’t have a

type by itself. Instead, it’s a reference to an object of a certain type.

Lists, dictionaries and class instances are mutable, while strings, numbers and tuples are

immutable. Python stores the type of object within itself and at run time checks if any operation
applied to an object is permitted according to its type. Python performs dynamic type checking.8

Dynamic typing

Python performs type-checking at runtime. type() returns the type of an object:

 def sum(a,b):
 if type(a) == str and type(b) == str:
 return a.upper()+ b.upper()

Notice that functions are polymorphic, since they can take arguments of any type. 9 Even
when this approach gives us some freedom and code reusability, in some cases, we may want to
make sure a function will accept arguments or return values of a certain type only. Then, we can
make use of the type-check module 10 to specify a condition that the function must comply with
in order to be executed, whether for the types of its arguments or the value it must return:

>>> from typecheck import accepts
>>> from typecheck import returns
>>> @accepts(Number) # The function must accept a number as argument
>>> @returns(Number) # The function must return a number
... def intFunction(a): # If a is not a number, the function will not be executed
... return a

This is how we can have the freedom and comfort of dynamic typing and control of custom

type-checking.

Objects
In Python everything is an object: built-in types (as lists, tuples and strings), functions,

classes and obviously, instances of classes are objects as well. 11

Every object has an identity, a type and a value. The identity of an object is no more than
the address in memory where it is allocated. The type cannot be changed once the object is
created. The value can or cannot change, depending on the type of the object.

8 Wikipedia - Python Programming/Data types. 2008.
http://en.wikibooks.org/wiki/Python_Programming/Data_types [Retrieved on April, 2008]

9 Polymorphism is present extensively in Python types. See: Wikipedia -Polymorphism in object-oriented
programming. 2008. http://en.wikipedia.org/wiki/Polymorphism_in_object-oriented_programming#Python

10 WINTER, Collin. Type-checking module for Python. http://oakwinter.com/code/typecheck/ [Retrieved on
April, 2008]
11 CHATURVEDI, Shalabh. Python Types and Objects. 2005.
http://www.cafepy.com/article/python_types_and_objects/python_types_and_objects.html [Retrieved on
April, 2008]

We can define an empty class, with the statement pass and define its attributes once an
instance has been created:

class Point:
 def __init__(self, x, y):
 self.x = x
 self.y = y

class Paralellpiped:
 pass

The pass statement does nothing but fulfill the
requisite of a statement present where it has to be.
The class is defined with no attributes or methods.

>>> cube=Paralellpiped()
>>> cube.length = 10
>>> cube.center = Point(20, 20)
#length and Point are now attributes of Paralellpip ed

Types, classes and functions are first-class entities.12 A class can be defined with multiple
base classes, giving place to multiple inheritance.

Python 2.2 includes the first phase of "type/class unification". This is a set of changes
towards the unification of built-in types and user-defined classes. Here, the concept of new-style
classes is introduced and it refers to a new way to handle classes. Some differences in new-style
classes are the method resolution order and the disappearance of the restriction of using built-in
types (like lists and dictionaries) as base in a class definition.

The method resolution order in the classic model is set by the left-to-right depth-first rule.
There is a problem with this approach: In a "diamond diagram" of subclassing relationships, the
method resolution may not provide an accurate result.13

Classic New-style

(All new-style classes have object or a built-in type
as base)

class A:

 def save(self): ...

class B(A):

 ...

class C(A):

 def save(self): ...

class D(B, C):

 ...

In this case, the search order will be D, B, A, C, A.
Here, D.save() will invoke A.save() instead of
C.save().

class A(object):

 def save(self): ...

class B(A):

 ...

class C(A):

 def save(self): ...

class D(B, C):

 ...

In the new-style classes, the order changes. Now,
the sequence is D, B, C, A, which results in the
invocation of the C.save() method.

12 SAYFAN, Gigi.. Dig Deep into Python Internals. 2008. http://www.devx.com/opensource/Article/31482
[Retrieved on May, 2008]

13 ROSSUM, Guido van. Unifying types and classes in Python 2.2. 2008.
http://www.python.org/download/releases/2.2.3/descrintro/#mro [Retrieved on May, 2008]

For now, the classic and new-style classes coexist in the 2.2 version.

Note: Objects are a wide subject in Python. There are a lot of features in this language on this
topic, but unfortunately it is not possible to cover all of them in this writing.

Dictionaries, Lists and Tuples

A dictionary works like a map, where every value has a unique key (like a hash in Perl and
like a Hashtable class in Java). Even when dictionaries are mutable, keys within them are not. 14

>>> dct = {123:"First", 456:"second"}
>>> dct
{123: 'First', 456: 'second'}
>>> dct[123] # We can’t access the keys by value, only by key.
'First'

These built-in types work like containers of a sequence of objects. Lists and tuples are very
similar, but lists are mutable while tuples are not.

List: Tuple:
>>> l = [4,"home",2.0, "five", [5, 6]]
>>> l[2]
2.0
>>>l[1]=5

>>> t = (4,"home",2.0, "five", (5, 6))
>>> t[2]
2.0
>>>t[1]=5 #raise an error, since tuples are

immutable

Tuples can contain variables and also can assign its values to a set of variables. These
processes are known as packing and unpacking: 15

Pack Unpack

>>> x = 1
>>> y = "some value"
>>> z = 44.0
>>> t = (x, y, z) # Pack the variables
into a tuple
>>> t
(1, 'some value', 44.0)

>>> x1, y1, z1 = t #Unpack the tuple
into the named vars.
>>> x1
1

Since tuples are not mutable, they are much faster than lists or dictionaries. This is the

main reason for their inflexible nature.

Note: There are more built-in types not included here.

14 PILGRIM, Mark. Dive Into Python. 2003.
http://www.diveintopython.org/getting_to_know_python/dictionaries.html [Retrieved on April, 2008]

15 BRUNNER, Robert. Discover Python, Part 2: Explore the Python type hierarchy. 2005.
http://www.ibm.com/developerworks/opensource/library/os-python2/ [Retrieved on April, 2008]

Iterators

Iteration in Python is simple and easy to implement. Each time an iteration is needed, an
Iterator object is created calling Iter(). Let’s take look at the next code:

for element in (1, 2, 3):
 print element

This is a classic example of the printing of all the elements of a set. In this cycle, the for

statement defines a set of three elements (1,2,3). It also invokes iter() implicitly. The returned
iterator object will be referenced by element.

Each time the element is printed on line 2, the print statement invokes the next() method
of the iterator object. This method generates the next value to make it available every time it is
needed.

We can try it directly at the command line:
>>> l = 'abc‘
>>> it = iter(l) # Returns an iterator object
>>> it.next()
 'a‘
>>> it.next()
 'b‘

Generators

Generators are common functions that create and return iterators. A generator function
contains the yield instruction (as in Ruby), that specifies the point of return of a value.

In the caller, when the next() method is invoked, the code in the generator function is

executed from the last yield executed instruction (or the beginning of the function the first time),
until a yield instruction or the end of the function is found.

This approach permits to hold and maintain the state of the function ready to be resumed
the next time the next() method is called, improving performance.

def fib():
 a, b = 0, 1
 while 1:
 yield b # Holds the state of current function
 # and returns an intermediate value
 a, b = b, a+b

def func():
 c=0
 b=fib()
 while c<10:
 print b.next()
 c=c+1

Scope rules

At every moment there are at least three namespaces in Python: Local (function level),
Global (module level) and Python built-in namespace (language definition level). Names are
resolved in the innermost enclosing function scope. 16

Python is a statically scoped language, whose scope rules are similar to Algol’s. The

language supports nested scopes, where a variable defined in a function can be accessed by the
functions defined within it.

Example:

>>> def Add1(x):
... def Adder():
... return x + 1
... return Adder()
...
>>> Add1(5)
6

Note: Since this language does not require a declaration before use, the global statement must
precede every global var name. Otherwise, a local variable will be created instead of modifying
the existing global.

 global.x = 10

Garbage collection
Python automatically performs garbage collection using the reference count algorithm.

The flaw in this algorithm is reference cycling, which is not a problem for Python, as it can
detect, most of the time, cyclic references and free objects when they are not useful, even when
its reference counter is not equal to zero. 17

>>> list1 = []
>>> list1.append(list1)
>>> del list1

In this example, a list is added to itself. In this case, list1 will be freed, even when its
reference counter is 1.18

Garbage collection can be disabled with gc.disable() from the gc module, which also
provides the easiness to configure the frequency of collection, have access to unreachable objects
that cannot be freed and set options for debugging mode. 19

16 HYLTON, Jeremy. Statically Nested Scopes. 2007. http://www.python.org/dev/peps/pep-0227/ [Retrieved
on May, 2008]

17 There is no guaranty for 100% of success on cyclic references. See: http://docs.python.org/ref/objects.html
18 Python Documentation - Supporting cyclic garbage collection. 2004. http://python.active-
venture.com/ext/node24.html [Retrieved on May, 2008]

19 Python Library Reference. 2008. http://docs.python.org/lib/module-gc.html [Retrieved on May, 2008]

Modules
Van Rossum had some experience programming in Modula-2 and Modula-3, and liked

their easy extensibility, so he chose to make extensibility one of the major points of Python.20

He came up with the idea of dividing Python in modules, each module having its own
namespace, variables, objects, procedures and functions. Each module would be contained in a
script file.

When two modules are imported into the same project, they run side by side without
affecting each other, because each module is self contained. At any point of the program, the
reference to a function contained in a module must be preceded by its module name:
module_name.function_name(), or assign it to a variable:

>>> import fibo # import the fibo.py module
>>> fib = fibo.fib # assign the function fib of the fibo module
 # to fib local variable
>>> fib(500)
1 1 2 3 5 8 13 21 34 55 89 144 233 377

Python comes with a collection of built-in modules, a small set that is loaded by default at
initialization time of the interpreter, and a big, really big library of modules for various tasks:
networking, database access, data compression, email, XML, http and others, around 270 freely
available in the latest installation of Python (2.5.2).

The official Python tutorial at python.org boast that the philosophy of this programming
language is “batteries included”, meaning that everything you need to work (or have fun) with it
is included.

Exception handling
Exception handling is based on Modula-3. In Python, for each thread, there is an error

indicator of the last error encountered. When a function raises an error, it modifies this
indicator.

Example21:
value = raw_input("Type a divisor: ")
try:
 value = int(value)
 print "42 / %d = %d" % (value, 42/value)
except ValueError:
 print "I can't convert the value to an integer"
except ZeroDivisionError:
 print "Your value should not be zero"
except:
 print "Something unexpected happened"
finally: print "Program completed successfully"

If no except block is matched, the error or exception is propagated back to the upper level,
until it finds a matching except statement, or the top level Python interpreter that stops the

20 VENNERS, Bill. The Making of Python - A Conversation with Guido van Rossum, Part I
http://www.artima.com/intv/pythonP.html [Retrieved on April, 2008]
21 Example from: http://www.freenetpages.co.uk/hp/alan.gauld/tutor2/tuterrors.htm [Retrieved on May,
2008]

program execution displaying a Python error message. 22

The finally statement ensures that the code bellow it will always be executed, whether an
exception is raised before or not. This may be useful when there are some open files and an
exception rises. All files can be closed before execution is stopped.

 Errors or exceptions can be generated manually, using the raise command. The
raised error will look as any other exception to the program, and can be caught by a
try/except block. 23

denominator = input("What value will I divide 42 by ?")

if denominator == 0:
 raise ZeroDivisionError()

 Python has predefined exceptions, but we can define our own exception types, defining a
new exception class. In general, raising errors and managing exceptions in Python gives us a lot
of freedom in control program flow.

Productivity
Python programs have great advantages: They are very easy to maintain, and require a lot

less typing. In an interview with the magazine Artima developer, Guido van Rossum says that a
program in Python has 5 times less code than one written in Java. 24

Managing lists is where Python shines. Lists could be used as base for a stack or queue, and
sorting lists is pretty simple. Even testing for an element in a list or tuple is trivial.

Examples of list uses:

>>> sports = ['Football', 'Baseball', 'Cricket']
>>> sports.sort()
>>> print sports
['Baseball', 'Cricket', 'Football']
>>> 'Cricket' in sports
True

Lists could be made up of any object valid in Python, and mixing integers, floats, strings,
lists, tuples, dictionaries is common.

22 GAULD, Alan. Learning to Program - Handling Errors.
http://www.freenetpages.co.uk/hp/alan.gauld/tutor2/tuterrors.htm [Retrieved on May, 2008]
23 Example from: http://www.freenetpages.co.uk/hp/alan.gauld/tutor2/tuterrors.htm [Retrieved on May,
2008]
24 VENNERS, Bill. Programming at Python Speed- A Conversation with Guido van Rossum, Part III
http://www.artima.com/intv/speed.html [Retrieved on April, 2008]

Functional programming and list comprehension
There's even space for functional programming in Python: map, filter and fold are included

in the core of Python. But the preferred method for handling lists, the pythonic way is using list
comprehension, as it is faster and easier to read:

>>> list = [1,2,3]
>>> list.append(42.5)
>>> list.pop() #using the list as a Stack
42.5
>>> list.pop(0) #using the list as a Qeue
1

>>> def square(x):
 return x*x
>>> map(square,list) #map function to generate a squares list
4, 6
>>> [x*x for x in list] #Easily matched with list comprehension

As a cool note, Paul Graham, in his online essay Great Hackers, wrote that the greater
hackers program in Python, and disparages Java, stating that Python gives more freedom and
productivity to hackers, and then, cites one hacker that built its own Segway riding machine and
programmed its controller in Python in just one day. 25

Performance
Performance is the first flaw of this language. For some tasks it can be tremendously slow.26

Python is not recommended for heavily compute-bound applications.

Summary
Despite its slow performance, the language can be used for: portable applications, as

“glue” between applications in different languages and platforms and for building working
prototypes.

Python is a very easy-to-use, highly productive scripting language, being widely used. In
fact, Google, Industrial Light & Magic, Yahoo, Zope, NASA and other heavy weights use Python
in production due to its multiplatform capability, its ease of use and low maintenance costs.

25 GRAHAM, Paul. Great Hackers. 2004. http://www.paulgraham.com/gh.html [Retrieved on April, 2008]

26 NORVING, Peter. Python for Lisp Programmers - Introducing Python. http://norvig.com/python-lisp.html
[Retrieved on April, 2008]

Table of Contents
History of Python __ 2

Python__ 2

Multiplatform___ 2

Semantics ___ 3

Types and Objects __ 3

Data types ___ 3

Dynamic typing ___ 4

Objects ___ 4

Dictionaries, Lists and Tuples __ 6

Iterators ___ 7

Generators ___ 7

Scope rules___ 8

Garbage collection ___ 8

Modules___ 9

Exception handling ___ 9

Productivity ___ 10

Functional programming and list comprehension ______________________________11

Performance ___11

Summary__11

Other references:
Wikipedia - ABC programming language. 2008.
http://en.wikipedia.org/wiki/ABC_programming_language [Retrieved on April, 2008]

VENNERS, Bill. The Making of Python: A Conversation with Guido van Rossum, Part I. 2003.
http://www.artima.com/intv/pythonP.html [Retrieved on April, 2008]

VENNERS, Bill. The Making of Python: A Conversation with Guido van Rossum, Part II. 2003.
http://www.artima.com/intv/pyscale.html [Retrieved on April, 2008]

PEMBERTON, Steven. A short introduction to ABC programming language. 2006.
http://homepages.cwi.nl/~steven/abc/ [Retrieved on April, 2008]

ROSSUM, Guido van. Python Reference Manual - Object, values and types. 2008.
http://www.python.org/doc/current/ref/objects.html [Retrieved on April, 2008]

