

The University of Arizona

Computer Science Department

College of Science

CSC 520, Spring 2008

Principles of Programming Languages

Dr. Christian Collberg

Team Members:
Amit Wadhwa

Nithya Chandrasekaran

May 14, 2008

GAWK

Contents

1. Introduction ... 3

2. History .. 3

3. Uses ... 3

4. Generic Gawk Command .. 4

5. Patterns in GAWK ... 4

5.1 BEGIN and END .. 4

5.2 Expression Patterns ... 4

5.3 Regex Patterns .. 4

5.4 Compound Patterns ... 5

5.5 Range Pattern .. 5

6. Actions in GAWK ... 5

6.1 Variables and Arrays in GAWK .. 5

6.2 Functions ... 6

6.3 Control Statements .. 7

7. Basic GAWK Programs ... 7

7.1 One Liners ... 7

7.2 GAWK Scripts .. 8

8. RUNNING GAWK ...10

8.1 Running from script ...10

8.2 From the command line ..10

9. Concepts ..10

10. GAWK Internals ..11

11. Comparison ...12

11.1 Perl vs. Gawk ..12

11.2 Python vs. Gawk ...12

12. Summary ..12

13. References..12

Books ..12

Web ...12

1. Introduction
GAWK is a highly powerful text processing and pattern matching language that enables working
with information either stored in files or piped to it as input. GAWK follows the data driven
paradigm such that each program consists of a set of rules applicable to a pattern or a piece of
content. The programs are interpreted which means that is they are converted to binary on the
fly each time they run, by an interpreter program. This renders them portable.

When a pattern occurs repetitively in a text file or a similar action needs to be performed for
multiple match patters, single-use programs in C, C++, or Pascal serving the purpose is time-
consuming and inconvenient. GAWK handles such tasks very easily. The gawk utility interprets
a special-purpose programming language that makes it easy to handle simple data-reformatting
jobs. The gawk language is also very useful for processing large amounts of raw data from the
output of other utility programs like ‘ls’. Programs in gawk are usually much smaller than they
would be in other languages serving the same purpose.

2. History
AWK derived its name from its designers. Alfred V. Aho, Peter J. Weinberger and Brian W.
Kernighan. The first version of AWK came into being in 1977 at AT&T Bell Laboratories. An
enhanced with better support for user defined functions, multiple streams and computed regular
expressions was introduced in 1985. The GNU implementation of GAWK was written by Paul
Rubin in 1986. It was later completed by Jay Fenlason. Jürgen Kahrs introduced the network
access features in GAWK.

The System V Release version 4 cleaned up some more behaviors of the language and clarified
the specification for awk in the POSIX command Language and Utilities standard. Some new
features added between V7 and SVR3.1 included support for built in numeric functions, string
manipulation functions, C compatible operator precedence.

3. Uses
Some applications of GAWK include:

1. Enables select/display and other operations on contents of the file, selecting rows,
columns or fields and sorting as necessary (Text Processing).

2. Manage small, personal databases.
3. Generate formatted reports.
4. Prototyping.
5. Validate data.
6. Generate indexes and perform other document preparation.
7. Perform calculations with numeric information extracted from a specific column.

The broader application areas on which the focus of GAWK lies are:
1. Computer Networking
2. Artificial Intelligence
3. Data Mining
4. Bio Informatics

4. Generic Gawk Command
The generic command in GAWK is a pattern-action statement and a gawk program usually
consists of one or more of these statements

• /pattern/{ action}

Gawk scans a sequence of input lines one after another, searching for lines which match the
patterns in the program. For each matching pattern the corresponding action is performed.

5. Patterns in GAWK
Actions are performed when a line matches the associated pattern. One of the powerful aspects
of Gawk is that the user can specify patterns in various ways. The various patterns are:

1. BEGIN and END
2. Expression based patterns
3. Regular expression patterns
4. Compound patterns
5. Range patterns

5.1 BEGIN and END
Gawk contains two special patterns BEGIN and END. These patterns do not match any input
line but are used for initialization and cleanup respectively. The statements in BEGIN action are
executed before gawk reads any input and those in the END action are executed after all input
has been read.

5.2 Expression Patterns
Any expression can be used a pattern. If the expression evaluates to a nonzero or nonnull value
at an input line, then the pattern matches that line. Typical expressions would involve
comparison between strings or numbers using any of the comparison operators (<, <=,>,
>=,!=,==,~,!~), where ! stands for not (!= : not equal to) and ~ stands for matched by.

Example:

$3>=$2

Select lines where value of third field is
greater than or equal to second field

$0>”M” Select lines which start with ‘N’, ‘O’ R

5.3 Regex Patterns
In gawk, regular expressions patterns can be used for specifying and matching strings.

Example:

/AB*C/

Matches AC, ABC, ABBC etc

/[A-Z]+/ Matches any string of one or more
uppercase characters

/^ [0-9]+$/ Matches any line that consists of only
digits

/[A-Za-z][0-9]?$/ A letter or a letter followed by a digit

5.4 Compound Patterns
A compound pattern can be used to combine multiple patterns using parentheses and logical
operators OR (||), AND (&&) and ! (NOT). A compound pattern matches an input line if the
expression evaluates to true.

The following expression uses the AND operator to select all lines in which the fourth field is
‘Readme.txt’ and third field exceeds 500.

$4==”Readme.txt” && $3>500

5.5 Range Pattern
A range pattern consists of two patterns separated by a comma, i.e. pat1, pat2

It matches each line between an occurrence of pat1 and the next occurrence of pat2. E.g.
/hello/, /world/ matches lines starting with the first line that contains ‘hello’ till the next line
containing ‘world’.

6. Actions in GAWK
In the pattern-action statement the pattern decides when the action has to be executed. The
action can sometimes be very simple like a print statement and other times it can be a
sequence of statements which are separated by a newline or a semicolon in GAWK.

Actions can consist of:

1. Expressions (assignments using variables/arrays, some operations)
2. Function calls including Print, printf statements
3. Control Statements: Conditionals(if and if else), Loops(while, for, for in, do) and Other

flow control statements(break, continue, next, exit, exit expression etc)

6.1 Variables and Arrays in GAWK
A variable in Gawk is very similar to variables in C with a few differences. Firstly, the type of a
variable in Gawk is not declared, instead Gawk infers the type from the context. An uninitialized
variable has the string value “” (null string) and the numeric value of 0.

Gawk also has some built in variables called predefined variables that exist to provide easy
access to useful information and to change the default behavior of Gawk.

Some of the variables are:

Variable Meaning
ARGC The number of command-line arguments
ARGV An array of command-line arguments
ERRNO The UNIX system error message
FS The input field separator
IGNORECASE Controls the case sensitivity
NF The number of fields in the current record

An array in Gawk is a table of values known as elements. Each element has a unique index
which can be a string or a number. Gawk basically supports only 1 dimensional array, but multi
dimensional arrays can be simulated as we will see in a later part of the report. Gawk arrays are

quite different from arrays in other languages since the size of an array needn’t be specified you
start to use it and any number or even a string may be used as an array index.

In most languages, array is stored in a contiguous block of memory and the index in the array
must be a positive number with index 0 specifying the first element, index 1 the second element
and so on.

Index: 0 1 2

In Gawk arrays are associative i.e. each array is a collection of pairs, an index, and its
corresponding array element value

Element Value
2 5
“foo” 8
3 “bar”

One advantage of such a scheme is that pairs can be added to the array anytime. Another
result of associative arrays is that we can have non-positive numbers and strings as indices.

Example: Using Arrays

{ line[NR]] = $0 }
 END { i = NR;
 while(i > 0){
 print line[i];
 i=i-1;

 }
}

Apart from the above Gawk offers a special in loop which can be used to iterate through array
elements.

E.g. for (x in myarray) { print myarray[x] }

Multi dimensional arrays can be simulated with GAWK in the following way:

E.g. myarray[1,3] = “a”; myarray[1,”ppl”] = 5;

Internally, Gawk stores the index as subscript1@subscript2 i.e.

myarray[1,3] = “a”; is equivalent to myarray[1@3]=”a”.

This property can be used to implement data structures like lists and set easily with arrays. E.g.
mylist[1,”value”]=2; mylist[1,”next”] = 3;

6.2 Functions
GAWK has a lot of built in functions and supports user defined functions also. Built-in functions
are functions that are always available for the GAWK program to call. The major Built in
functions are for manipulating numbers and strings and for Input/output.

4

5 9

User defined functions have to be defined anywhere between the rules of the GAWK program.

Thus, the general form of a GAWK program is extended to include sequences of rules and user-

defined function definitions.

The definition of a function looks like this:

function name (parameter-list) {
 body-of-function
}
The keyword function may be abbreviated func.

6.3 Control Statements
Gawk offers various control statements like if-else, while to control the flow of execution of the
program. Most of the control statements in Gawk are patterned on similar statements in C. The
various control statements are:

1. If
2. While
3. do-while
4. for
5. break
6. continue
7. next
8. exit

 All other statements apart from next and exit are same as C. The next statement forces Gawk
to immediately stop processing the current record and go on to the next record. The exit
statement causes Gawk to immediately stop executing the current rule and to stop processing
input; any remaining input is ignored. To see the details of other control statements please see
references [1], [2], or [4].

7. Basic GAWK Programs

7.1 One Liners

GAWK supports simple yet powerful command line tools. Some command line tools are listed
below:

Example 1:

gawk '{print $1}' file.data
reads the file ‘file.data’ and performs the action of printing the first field of every record.

Example 2:

ps |gawk '$11 == "ssh" {print $2}’

This command pipes the output of unix ‘ps’ command and displays those pid’s whose filename
matches ‘ssh’.

Example 3:
Regular expression pattern identification can

gawk '$2!~/pattern1/{ print $9,$1 }' filename | sort

Example 4:
Various conditionals can be imposed to extract required fields from only those records which
satisfy a predicate.

gawk '$3 > $2{print $6}' filename

This example prints the 6th field
second field value.

7.2 GAWK Scripts

Every line in a gawk program is addressed as a record and is composed of
field being an independent entity on which an action can be applied.

File = records + field

The input/output streams are ASCII text records. They may be treated as numeric quantities,
strings, characters or fields.
A Gawk script has three parts:

Prepare

expression pattern identification can also be done using command line expression.

gawk '$2!~/pattern1/{ print $9,$1 }' filename | sort

arious conditionals can be imposed to extract required fields from only those records which

gawk '$3 > $2{print $6}' filename

field only in those records wherein the third field is greater than the

Every line in a gawk program is addressed as a record and is composed of various fields, each
field being an independent entity on which an action can be applied.

The input/output streams are ASCII text records. They may be treated as numeric quantities,

Sort Format

be done using command line expression.

arious conditionals can be imposed to extract required fields from only those records which

in those records wherein the third field is greater than the

various fields, each

The input/output streams are ASCII text records. They may be treated as numeric quantities,

Format

Example: The following illustrates a gawk program with well defined BEGIN and END blocks

BEGIN{print "start"}
$1=="start"{print "process"}
END{print "end"}

GAWK is also used in pretty formatting and display of reports. A variety of operations can be
used to display the output. Sorting, summation of two columns and conditional display are just a
few listed among a plethora of auxiliary actions supported by gawk.HTML tags can be included
as a part of the script to enhance the appearance and readability of the report and to build other
useful tools like recursive directory index creation.

In gawk, the output of a command can also be piped into getline, using `command | getline'.The
string ‘command’ is run as a shell command and its output is piped into gawk to be used as
input. This form of input using ‘getline’ reads one record at a time from the pipe

Example: The following is a code snippet extracted from a program that builds an html index file
for the current directory and all its sub directories recursively. The second part of the program
illustrates how HTML tags can be used as a part of gawk program to build index pages in a
formatted manner.

#!/usr/bin/gawk -f
BEGIN {
FS= " ";
 listfilecomm = "ls -lh " ARGV[1];
 while(listfilecomm | getline)
 {

 if(flag == 0)
 {
 total=$NF;
 flag=1;
 continue;
 }

system ("gawk -f sample.gawk "result"/"$NF " > "result"/"$NF"/"$NF".html");
<-- do other stuff to keep track of the files read --->
printf " <TR>\n"

printf " <TD align=left colspan=500>
%s</TD>\n",href, $NF;

printf " <TD align=left colspan=20 >%s</TD>\n", size;
printf " <TD align=left colspan=20>%s %s</TD>\n", $6, $7;
printf " <TD align=left colspan=20>%s</TD>\n", $8;
printf " <TD align=left colspan=20>%s</TD>\n", type;

printf " </TR>\n"

}
(This program is not in its entirety and only specific portions have been extracted for illustration)

8. RUNNING GAWK
There are two ways to run gawk:

1. Running from a script
2. Running from a Command line

Brief details of both the methods are given in this section.

8.1 Running from script
By invoking the command,

 gawk ‘program-name’ input-file1 input-file1

the shell starts gawk and uses the program ‘program-name’ to process the records in the input
file. The program, ‘program-name’ contains a series of rules (pattern/action) to be applied to the
input files that follow it. If the gawk program name is mentioned without supplying an input file
name, then whatever is typed next is taken as input for the gawk program.

Example:
A sample gawk program is given as follows

#! /bin/gawk -f
BEGIN { print "I love GAWK" }

If the script file name is gawky, then it can be directly invoked by calling
$gawky (on the command line)

This will have the same effect as

$gawk –f gawky (-f option fetches the program to be executed)

8.2 From the command line
By invoking the /pattern/{action} and the file name on which it is to be applied as follows.

cat file | gawk ‘(pattern){action}’

9. Concepts
In this section we will see how GAWK relates to the concepts we have discussed in the class.
One may notice most of the principles guiding the language are based on the assumption that
GAWK will normally be used to write small programs (max. few hundred lines).

1. Interpreted: GAWK is interpreted which seems suitable to its primary usage of writing
small programs which are around one to a few hundred lines. However, the latest gawk
version comes with a compiler.

2. No predefined memory limit, so the size of memory allocated or the files being
processed are limited only by the memory made available by the OS (which may be
dependant of amount of primary memory, virtual memory etc)

3. No explicit type system, variable types are interpreted by their usage.
4. In control structures supports user defined functions. Has an in statement which acts like

an Array iterate.
5. In Error Handling it doesn’t support exception handling but unlike AWK, GAWK gives

meaningful error messages.

Some unique features in GAWK which make it quite different from other mainstream languages
are:

1. Associative Arrays (Refer Section 6.1)
2. Automatic Initialization and Implicit Coercion of variables (Refer Section 6.1)
3. Lint Checking when using the compiler which warns about potential runtime bugs
4. Support for TCP/IP communication:

GAWK doesn’t use sockets like C, C++, or Perl for network communication. Gawk
extends the two-way I/O mechanism to simple networking through the use of special file
names and the operator |&. When a “co process” that matches the special files we are
about to describe is started, gawk creates the appropriate network connection, and then
two-way I/O proceeds as usual.

Example: Ask the machine about the current time
BEGIN{"/inet/tcp/0/localhost/daytime" |& getline
 print $0 close("/inet/tcp/0/localhost/daytime")}

10. GAWK Internals

Gawk has transparent memory management built into it meaning it just needs to be told what is
to be done and it handles much of the hard work behind the scenes.

When a text file is fed as an input to GAWK, the following things actions are taken internally.
1 All the files listed in the command line are opened and read automatically.
2 Memory management for all variables is handled.
3 Each line is parsed and each line is split into fields based on the field separator.
4 Each record/line in the file is presented to the script as $0.
5 The required internal variables (NF, NR, FS, and RS) are automatically populated during the

parsing action.
6 Conversion between the internal data types (String, arrays, and numbers) is automatically

handled.
7 Once the processing is done, the text file is closed.

New features maybe added to GAWK in the form of extension modules with the support of
shared libraries. The gawk coding style needs to be followed for GNU compliance. As a part of a
brief description of Gawk internals, some structure members, functions, and macros which are
used when writing extensions are listed.

1 NODE: Strings, variables, numbers as well as arrays and all other types are built using

objects of type Node.
2 AWKNUM: This represents the internal type of floating point number.
3 n->param_cnt: The number of parameters passed to the function at runtime.
4 n->stlen: The data and length of a node’s string value.
5 n->type: This value should either be Node_var or Node_var_array for function parameters.
6 NODE *make_string(char *s, size_t len) : This takes a C string and turns it into a pointer to a

NODE that can be stored appropriately in permanent storage.
7 NODE *make_number(AWKNUM val): This takes an AWKNUM and turns it into a pointer to

a NODE that can be stored appropriately in permanent storage.

Dynamic extension and addition of new built-in functions to gawk is possible via
‘extension(lib,func)’ which dynamically loads the shared library and calls function in it to
initialize the library. The environment variable AWKPATH specifies a search path to use when
finding source files named with the −f (fetch) option. The default path is set to
".:/usr/local/share/awk", if this variable is absent. No path search is performed if a file name
given to the −f option contains a ‘‘/’’ character.

11. Comparison
This section addresses some similarities and differences between gawk and other some other
popular scripting languages.

11.1 Perl vs. Gawk

The focus of Perl lies in much larger application development unlike gawk which is powerful for
small programs. Perl is semi-compiled by the standard interpreter before execution starts, giving
it a speed advantage on some programs. But gawk is entirely interpreted.

11.2 Python vs. Gawk

Gawk saves a lot of code by implicitly processing the command line, including options and
arguments and reading and looping over the input as well as doing field splitting. In gawk, gsub
allows one to compactly obtain the list of whitespace whereas in Python, this needs to be done
by hand. In Python output in a buffer has to be built up, whereas in gawk printf does this
automatically. Python lacks the command processing, option processing features and does not
allow sub and gsub functions.

12. Summary
GAWK is a very simple and powerful language. Its power resides in accomplishing tasks with a
few lines of code which can be intuitively understood by a reader. It has powerful text
processing and pattern matching capabilities which can make tasks of reading raw data and
transforming it into formatted reports.

The main drawback of GAWK is that it is mainly line oriented in nature and has no procedural or
object oriented or functional concepts which makes it hard to write larger and complex
applications with it.

13. References

Books

1. The AWK Programming Language by Aho, Weinberger, Kerningham.
2. Effective AWK programming by Arnold Robbins.
3. Sams Red Hat 6 unleashed

Web

4. GAWK manual http://www.cs.utah.edu/dept/old/texinfo/gawk/gawk_toc.html
5. Introduction to GAWK http://www.linuxjournal.com/article/1156
6. Getting started with GAWK

 https://www6.software.ibm.com/developerworks/education/au-gawk/index.html

