CSc 553

Principles of Compilation

Trivial Code Generation
20 : Code Generation Il

Department of Computer Science
University of Arizona

Generating Code From Trees

@ To generate code from expression trees, traverse the tree and
emit machine code instructions.

@ For leaves (which represent operands), generate load R
instructions. For interior nodes, generate arithmetic Genera‘h ng Code From La beled
instructions.

@ Assume an infinite number of registers = easy algorithm! Tl’eeS

°

Each tree node N has an attribute *R’, the register into
which the subtree rooted at N will be computed.

R=RO
SUBR2,R0

ReR2
SUB R3,R2

R=RO
ADD RLRO
R=R ReR3

ADD R4R43
MOvaRo MovbRi MOVeR2 geRe

MOVCR3 MOV dRe,

Optimal Ordering For Trees | Optimal Ordering For Trees Il

@ We can generate 'optimal’ code from a tree. ‘Optimal’ in the @ Assume two registers available. The first ordering evaluates
sense of 'smallest number of instructions generated’. the left subtree first, and has to spill RO to have enough
@ The idea is to reorder the computations to minimize the need registers available for the right subtree.
for register spilling. First Order | Second Order First Order Second Order
t; :=atb t, i=c+d MOV a, RO | MOV ¢, RO
t2 ADD b, RO ADD d, RO
() t3 MOV ¢, R1 | MOV e, RL
First Order | Second Order tg ADD d, R1 SUB RO, R1
o e t1 :=a+b ty :=c+d MOV RO, t; | MOV a, RO
ty :=c+d t3 e - t2 Mov e, RO ADD b, RO
ONOROO. t3 ime-ty |t i=a+b SUB R1, RO |SUB RO, R1
ts 1= t1 - t3 |ty t1 - t3 MOV ti, Rl | MOV RO, t4
° 0 SUB RO, R1
MoV R1, t4

The Tree Labeling Phase | The Tree Labeling Phase Il

@ The algorithm has two parts. First we label each sub-tree with o max(L,R) max(L,R)
the minimum number of registers needed to evaluate the

L R L R
subtree without any register spilling. A LeR A LR A

The Labeling Algorithm: @ If we have a node n with subtrees n; and np with

@ nis a left leaf = label(n) := 1; L=label(n;) & R=label(m,) & L<R then we can first
@ nis a right leaf = label(n) := 0; evaluate ny into a register Reg using R registers. Then we use
@ n's children have labels /; & Ig: R-1 registers to evaluate ny.

o I # Ig = label(n) == max(lL, Ir)

@ Similarly, if L>R then we can first evaluate ny into a register
o Iy = Ig = label(n) := I, + 1

Reg and use the remaining R-1 registers for n,.

L
L=R
@ However, if L=R A we'll need one extra
register to hold the result of n; while we evaluate ns.

The Generation Phase |

The Generation Phase Il

@ gencode(n) generates machine code for a subtree n of a
labeled tree T.
MOV M, R Load variable M into register R.
MOV R, M Store register R into variable M.

OP M, R Compute R := R OP M. OP € ADD, SUB, MUL, DIV.

OP R2, R1 ComputeR1 := R1 OP R2.

@ A stack rstack initially contains all available registers.
gencode (n) generates code for subtree n using the registers
on rstack, computing its value into the register on the top of
the stack.

@ A stack tstack of temporary memory locations is used for
register spilling.

@ Generate a load instruction to load the variable into a register:

MOV name, top(rstack) |

() cuse 1

. name
@ Generate code for n; into register top(rstack), i.e. call
gencode (ny).

@ Generate |O0P name, top(rstack) |

Case 0 A leaf n is the leftmost child of its parent.

Case 1 A leaf ny is the rightmost child of its parent.

Case 2 A right subtree ny requires more registers than the
left subtree ny.

Case 3 A left subtree n; requires more registers than the
right subtree nj.

Case 4 Both subtrees require registers to be spilt.

Case 0 Case 1
! 0

@ nm can be evaluated without spilling, but np requires more
registers than nj.

@ We swap the two top registers on rstack, evaluate ny into
top(rstack), remove the top register, then evaluate n; into
top(rstack). Restore the stack.

@ swap(rstack), gencode(n;)

@ R := pop(rstack)
© gencode ()

© Generate |OP R, top(rstack)

© push(rstack, R), swap(rstack)

The Generation Phase V The Generation Phase VI

@ n can be evaluated without spilling, but n; requires more @ Neither n; nor ny can be evaluated without spilling,
registers than ny. @ We evaluate n into a temporary memory location
@ We evaluate ny into top(rstack), remove the top register, top(tstack), and then we evaluate ny into top(rstack).

then evaluate n; into top(rstack).
? P @ gencode(m)

@ gencode(n) @ T := pop(tstack)
@ R := pop(rstack) © Generate
© gencode(n) Q@ gencode(ny)

@ Generate |OP top(rstack), R © push(tstack, T)
© push(rstack, R) Q@ Generate |OP T, top(rstack)

Example | (A)
Examples
gencode (t;) [R1,R0] case2
gencode (t3) [RO,R1] case3
gencode (e) [RO,R1] caseO
gencode (1) [RO] casel
gencode(c) [RO] case0

MOV c, RO
SUB RO, R1

gencode (t1) [rO] casel
gencode (a) [RO] case0
| ye——

Im @ ADD b, RO
©.
aase 0

\ma\

= o]

(5) MoV a, RO

(a+b)—(e—(c+d))
Two registers available

Summary

(5) SUB To.Rq

@

_ oy ~
m ‘9 +
(z) ADD d,R0 ‘

~

t

b =1

H

(7) MOV a, RO (4) MOV E, Ro|

(a+b)—(e—(c+d))
Oneregister available

Readings and References

@ This lecture is taken from the Dragon Book:
Code Generation From Trees: 557-559, 561-566.
Local Optimization: 530-532, 600-602.

(a+(b/c))/(d (e +f))

@ Why do we swap registers in Case 27 oo ree
s node available

RO := Ri - RO

e SUB R1, RO

uestion 07.330/96

One register
(®0) is Homeworl K 11
available.

(a+ (b/C))/(d *(e+f))

MO\/ RO

R | h‘ﬁF \@Tﬁﬁﬁ

