## Principles of Compilation

## Memory Hierarchy

34 : Memory Hierarchy Optimization

## Department of Computer Science University of Arizona

## Memory Hierarchy I

- Memory is organized hierarchically. Storage at the bottom of the hierarchy is large and slow. Storage at the top of the hierarchy is small and fast.
- Accessing a memory word $X$ could result in the following: Swap in VM page containing $X \rightarrow$ Load memory line containing $X$ into E -cache $\rightarrow$ Load cache line containing $X$ into D-cache $\rightarrow$ Load $X$ into register.
- Notice that when moving $X$ up the hierarchy, we don't just move $X$ but the entire block on which $X$ resides.
- We should try to organize our code so that it makes efficient use of every datum moved up the hierarchy.




## Memory Hierarchy IV

- We will see various compiler transformations on loops that will change the data access pattern to make efficient use of loaded data. Often, the idea is to turn a stride- $n$ access pattern (which only uses one word from each cache line per loop iteration), into a stride-1 access.
- Loading code is no different from loading data. The I-cache is of limited size, and we should make efficient use of the instructions that are loaded. Ideally, we want loop bodies to fit neatly into the I-cache. Compiler transforms can break large loops into smaller ones, and merge small loops into larger ones.
- We also want to make efficient use of virtual memory. We can sort the procedures of a program so that procedures that are likely to call each other fall on the same VM page.
- Another technique is to reduce the size of procedures by splitting them into two components: the code that is likely to execute all the time (the main-line code) and the infrequently-executed code (e.g. exception-handling code). The primary components of procedures are grouped together, and the secondary components are grouped together.


## Transformations

## Loop Transformations

－We＇ll look at transformations on FOR－loops that can affect memory hierarchy utilization．The legality of these transformations depends on the loops＇data dependencies．
－Some of these transformations are also used by parallelizing compilers．In general，a loop can＇t be parallelized（reorganized to be run on a multiprocessor machine）if it has any data dependencies．Some transformations shown here can break such dependencies so that the loop can be parallelized．
－Some of the loop transformations do not improve performance by themselves，but reorganize the loops so that they are amenable to other optimizing loop transformations．

## Loop Fission

－Loop Fission breaks a loop into two or more independent loops．Also known as loop distribution．
－The smaller loops may fit better in the I－cache，may have better D－cache utilization，or can more easily be parallelized．
－Can the loop below be broken into smaller loops？

```
FOR / := 1 TO N DO
    S : A [I] := A[I] + B[I-1];
    S2: B[I] := C[I-1] * X + V;
    S3: C[I] := 1/B[I];
    S4: D[I] := sqrt(C[I]);
ENDFOR
```

Dependencies
$S_{2} \delta_{<} S_{1} S_{2}$ assigns a value to $\mathrm{B}[I]$ that will be used by $S_{1}$ in the next iteration．
$S_{2} \delta_{=} S_{3} \quad S_{2}$ assigns a value to $\mathrm{B}[I]$ that will be used by $S_{3}$ in the same iteration．
$S_{3} \delta_{<} S_{2} \quad S_{3}$ assigns a value to $\mathrm{C}[1]$ that will be used by $S_{3}$ in the next iteration．
$S_{3} \delta_{=} S_{4} \quad S_{3}$ assigns a value to C［I］that will be used by $S_{4}$ in the same iteration．

```
FOR \(/:=1\) TO N DO
    \(S_{1}: \mathrm{A}[I]:=\mathrm{A}[I]+\mathrm{B}[I-1]\);
    \(S_{2}: B[I]:=C[I-1] * X+V\);
    \(S_{3}: C[I]:=1 / B[I]\);
    \(S_{4}: D[I]:=\operatorname{sqrt}(C[I])\);
ENDFOR
```



- If there are no cycles in the dependency graph, we can split the loop into separate loops for each statement.
- The loops must be ordered in a topological order according to the graph.
- If the graph has cycles, the statements in each strongly connected component must be in the same loop.
- Two nodes $n_{1}$ and $n_{2}$ of a graph $G$ are in the same strongly connected component $C$, if there is a path from $n_{1}$ to $n_{2}$ and a path from $n_{2}$ to $n_{1}$.

```
FOR / := 1 TO N DO
    S : A [I]:=A[I]+B[I - 1];
    S}: B[I]:=C[I-1]*X+V
    S : C[I]:=1/B[I];
    S4: D[I]:=sqrt(C[I]);
ENDFOR
```



- The dependence graph has 3 strongly connected components $\left(\left[S_{1}\right],\left[S_{2}, S_{3}\right],\left[S_{4}\right]\right) \Rightarrow$ the loop can be split into 3 separate loops.
- Since the graph has edges $\left[S_{2}, S_{3}\right] \rightarrow\left[S_{1}\right]$ and $\left[S_{2}, S_{3}\right] \rightarrow\left[S_{4}\right]$, the $\left[S_{2}, S_{3}\right]$ loop has to precede the other loops.

```
FOR J := 1 TO N DO
    S2: B[J] := C[J-1] * X + V;
    S3: C[J] := 1/B[J];
ENDFOR;
FOR J:= 1 TO N DO
    S1: A[J]:= A[J] + B[J-1];
ENDFOR;
FOR J := 1 TO N DO
        S4: D[J] := sqrt(C[J]);
ENDFOR;
```

$1:=N$ :

## Loop Fusion I

- Loop fusion merges two adjacent loops.
- Fusion can reduce loop overhead, increase instruction parallellism, improve locality, and improve load balance.


## Loop Fusion

Original Loops

```
FOR i := 1 TO N DO
    S : 
ENDFOR;
FOR i := 1 TO N DO
    S2: B [i+1]:= B[i] + A [i];
ENDFOR;
```

    Loops After Fusion
    FOR $i:=1$ TO N DO
$S_{1}: \quad \mathrm{A}[i]:=\mathrm{A}[i]+\mathrm{k}$;
$\begin{gathered}S_{2}: \\ \text { ENDFOR }\end{gathered} \quad \mathrm{B}[i+1]:=\mathrm{B}[i]+\mathrm{A}[i] ;$
$S_{2}:$
ENDFOR:

## Loop Fusion II

- The loops must have the same loop bounds.
- Two loops cannot be fused if $\exists$ a statement $S_{1}$ in the 1st loop and a statement $S_{2}$ in the 2nd loop, such that $\exists$ a dependence $S_{2} \Rightarrow S_{1}$ in the fused loop.

```
FOR i := 1 TO N DO
    S : A A [i] := A [i] + k;
\(S_{1}: \quad \mathrm{A}[i]:=\mathrm{A}[i]+\mathrm{k}\);
```


## Loop Reversal I

## Loop Reversal II

- Loop reversal runs a loop backwards.
- Reversal is legal only when there are no loop-carried dependence relations.
- Reversal can help with loop fusion. The loops below cannot be directly fused, since there would be a forward dependence between $S_{2}$ and $S_{3}$ (eg. for $i=5, S_{3}$ would use the old value of $\mathrm{C}[6]$ rather than the new value computed by $S_{2}$.).


## Original Loops

```
FOR i := 1 TO N DO
```

FOR i := 1 TO N DO
S1: A [i] := B[i] + 1;
S1: A [i] := B[i] + 1;
S
S
ENDFOR;
ENDFOR;
FOR i := 1 TO N DO
FOR i := 1 TO N DO
S3: D [i] := 1 / C [i+1];
S3: D [i] := 1 / C [i+1];
ENDFOR;

```
- Neither loop has any loop-carried dependencies, hence they can both be reversed. The reversed loops can be fused.
\(\Downarrow\) Reverse!
FOR \(i:=\mathrm{N}\) TO 1 DO
\(S_{1}: \quad \mathrm{A}[i]:=\mathrm{B}[i]+1\); \(S_{2}: C[i]:=A[i] / 2\);
ENDFOR;
FOR \(i\) := N TO 1 DO
\(S_{3}: \quad \mathrm{D}[i]:=1 / \mathrm{C}[i+1] ;\)
ENDFOR;
\(\Downarrow\) Fuse!
FOR \(i:=\mathrm{N}\) TO 1 DO
\(S_{1}: \quad \mathrm{A}[i]:=\mathrm{B}[i]+1\);
\(S_{2}: \quad \mathrm{C}[i]:=\mathrm{A}[i] / 2\);
\(\underset{3}{ }: \quad \mathrm{D}[i]:=1 / \mathrm{C}[i+1] ;\)
S3: D[I] \(-1, C[I+1]\);

\section*{Loop Reversal}
ENDFOR;
FOR \(i\) := 1 TO N DO
    \(S_{2}: \quad \mathrm{B}[i+1]:=\mathrm{B}[i]+\mathrm{A}[i+1] ;\)
ENDFOR;
    \(\Downarrow\) Illegal!
FOR \(i\) := 1 TO N DO
    \(S_{1}: \quad \mathrm{A}[i]:=\mathrm{A}[i]+\mathrm{k}\);
    \(S_{2}: \quad \mathrm{B}[i+1]:=\mathrm{B}[i]+\mathrm{A}[i+1] ;\)
ENDFOR;

ENDFOR;
OR \(i \quad:=1\) TO N DO
\(\mathrm{B}[i+1]:=\mathrm{B}[i]+\mathrm{A}[i+1]\)
ENDFOR;
\(\Downarrow\) Illegal!
i := 1 TO N DO
\(S_{2}: \quad \mathrm{B}[i+1]:=\mathrm{B}[i]+\mathrm{A}[i+1]\);
ENDFOR;

\section*{Loop Unswitching I}

\section*{Loop Unswitching}

\section*{Loop Unswitching II}
- If \(E\) could possibly throw an exception then we must guard it with a test in case the loop is never executed.

> Unswitched Loop

IF \(\mathrm{N}>1\) THEN
IF \(E\) THEN
FOR \(i:=2\) TO N DO
\(S_{1}: \quad \mathrm{A}[i]:=\mathrm{A}[i]+\mathrm{k}\);
\(S_{2}: B[i]:=\mathrm{A}[i]+\mathrm{C}[i]\);
ENDFOR;

\section*{ELSE}

FOR \(i:=2\) TO N DO
\(S_{1}: \quad \mathrm{A}[\mathrm{i}]:=\mathrm{A}[\mathrm{i}]+\mathrm{k}\);
\(S_{3}: \quad \mathrm{B}[i]:=\mathrm{A}[i-1]+\mathrm{B}[i-1]\);
ENDFOR;
ENDIF;
FMDTE.
- Conditional statements within a loop can reduce I-cache utilization and prevent parallelization. We can break out the if-statement and replicate the loops, to get two loops without any branches.
- If the boolean expression \(E\) is loop invariant then we can extract it out of the loop.

Original Loop
FOR \(i:=2\) TO N DO
\(S_{1}: \quad \mathrm{A}[i]:=\mathrm{A}[i]+\mathrm{k}\); IF \(E\) THEN
\(S_{2}: \quad \mathrm{B}[i]:=\mathrm{A}[i]+\mathrm{C}[i]\); ELSE
\(S_{3}: \quad \mathrm{B}[i]:=\mathrm{A}[i-1]+\mathrm{B}[i-1]\); ENDIF;
ENDFOR;

\section*{Loop Peeling I}
- To peel a loop we unroll the first (or last) few iterations.
- Peeling can remove dependencies created by the first (or last) few iterations of a loop. It can also help with loop fusion by matching the loop bounds of adjacent loops.
- The first loop below can not be parallelized since there is a flow dependence between iteration \(i=2\) and iterations
\[
i=3, \cdots n
\]

Original Loops
```

FOR i := 2 TO N DO
S1: B[i] := B[i] + B[2];
ENDFOR;
FOR i := 3 TO N DO
S2: A[i] := A[i] + k;
ENDFOR;

```
\(\Downarrow\) Peel!
IF \(\mathrm{N}>=2\) THEN \(\mathrm{B}[2]:=\mathrm{B}[2]+\mathrm{B}[2]\);

\section*{ENDIF;}

FOR \(i:=3\) TO N DO
\(S_{1}: \quad \mathrm{B}[i]:=\mathrm{B}[i]+\mathrm{B}[2] ;\)
ENDFOR;
FOR \(i\) := 3 TO N DO
\(S_{2}: \quad \mathrm{A}[i]:=\mathrm{A}[i]+\mathrm{k}\);
ENDFOR;
\(\Downarrow\) Fuse!
IF \(\mathrm{N}>=2\) THEN
\(\mathrm{B}[2]:=\mathrm{B}[2]+\mathrm{B}[2]\);
ENDIF;
FOR \(i\) := 3 TO N DO
\(S_{1}: \quad \mathrm{B}[i]:=\mathrm{B}[i]+\mathrm{B}[2]\);
\(S_{2}: \quad \mathrm{A}[i]:=\mathrm{A}[i]+\mathrm{k}\);
ENDFOR;

\section*{Loop Normalization I}

\section*{Loop Normalization}
- Normalization converts all loops so that the induction variable is initially 1 (or 0 ), and is incremented by 1 on each iteration.
- Normalization can help other transformations, such as loop fusion and peeling.
```

FOR i := 1 TO N DO
S : A A i] := A[i] + k;

```
ENDFOR;
```

FOR i := 1 TO N DO
S2: B[i+1] := A [i] + B[i+1];

```
ENDFOR;

\section*{Loop Interchange I}
- Loop interchange moves an inner loop outwards in a loop nest. It can improve locality (and hence cache performance) by turning a stride-n access pattern into stride-1:
```

FOR $i$ := 1 TO N DO
FOR $j:=1$ TO N DO
$\mathrm{B}[i]:=\mathrm{B}[i]+\mathrm{A}[j, i] ;$
ENDFOR;

```
Original Loop
ENDFOR;
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{} \\
\hline & & & R \\
\hline \({ }^{\text {A }}[2 ; 1]=\ldots\) & \({ }^{\mathrm{A}[2 ; 2]=\ldots}\) & \({ }^{\text {A }}[2 ; 3]=\ldots\) & 1 \\
\hline 1 : & & & G \\
\hline \(\left.\mathrm{A}_{[3} 3,1\right]=.\). & \(\left.\mathrm{A}^{[3}, 2\right]=\ldots\) & \({ }_{\text {A }}[3 ; 3]=\ldots\) & N \\
\hline & & & A \\
\hline \(\mathrm{A}^{[4,1]}=.\). & \(\left.{ }^{\text {A }} 4 ; 2\right]=\ldots\) & \[
\underset{y}{[4,3]=\ldots}
\] & L \\
\hline \multicolumn{3}{|c|}{J} & I \\
\hline A \({ }^{\text {[1, } 17}\) & \multirow[t]{2}{*}{A \({ }^{\text {[1, } 2\}}\)} & \multirow[t]{2}{*}{\({ }^{\text {A }} 11,31 \cdots\)} & T \\
\hline & & & E \\
\hline \multirow{3}{*}{I} & \multirow[t]{2}{*}{A \([2,2]=\)} & \multirow[t]{2}{*}{\(\left.{ }^{4} \backslash 2,3\right\}=\ldots\)} & R \\
\hline & & & C \\
\hline &  & A 3 , 31 \(=\). & H \\
\hline & & & N \\
\hline \(\mathrm{A}(4,1]=\ldots\) & \(\left.\mathrm{A}^{2} 4,2\right]=\), &  & G \\
\hline
\end{tabular}

\section*{Loop Interchange}

ENDFOR;
\[
\Downarrow \text { Fuse! }
\]
```

FOR i := 1 TO N DO
S : A [i] := A [i] + k;
S}:\quad\textrm{B}[i+1] := A[i] + B[i+1]
ENDFOR;

```

Original Loop
Interchanged Loop
FOR \(j:=1\) TO N DO
    FOR \(i\) := 1 TO N DO
        \(\mathrm{B}[i]:=\mathrm{B}[i]+\mathrm{A}[j, i] ;\)
    ENDFOR;
ENDFOR:

\section*{Loop Interchange III}
- A loop nest of two loops can be interchanged only if there does not exist a loop dependence vector of the form \((<,>)\).
- The loops in the loop nest below can't be interchanged. The next slide shows the order in which the array elements are assigned (dashed arrows); first in the original nest and then in the interchanged nest. Solid arrows show dependencies.

\section*{This Loop Nest Can't be Interchanged}
```

FOR i := 2 TO N DO
FOR j := 1 TO N-1 DO
A [i,j] := A [i-1,i+1];

```
    ENDFOR;
ENDFOR;
- In the interchanged loop A \([2,3]\) is needed to compute \(A[3,2]\). At that time \(A[2,3]\) has not been computed.


\section*{Loop Blocking I}
- Also known as loop tiling.
- The loop below assigns the transpose of B to A. Access to \(A\) is stride-1, access to B is stride-n. This makes for poor locality, and the loops will perform poorly on cached machines (unless the arrays fit in the cache).
- Loop blocking improves locality by iterating over a sub-rectangle of the iteration space.
- A pair of adjacent loops can be blocked if they can legally be interchanged.

FOR \(i:=1\) TO 8 DO
FOR \(j:=1\) TO 8 DO
\(\mathrm{A}[i, j]:=\mathrm{B}[j, i] ;\)
ENDFOR;
ENDFOR;
- To block a loop FOR \(i=10\) TO hi DO we select the following constants:
\begin{tabular}{|l|}
\hline ts \\
\hline to \\
\hline
\end{tabular}

The block size.
The block offset \((0 \leq\) to \(<\) ts \()\). Each block will start at an iteration such that \(i\) mod \(\mathrm{ts}=\mathrm{to}\).
Blocked Loop
\(\qquad\)
FOR \(T_{i}:=\lfloor(10-\) to \(\left.) / \mathrm{ts})\right\rfloor * \mathrm{ts}+\mathrm{to}\)
TO \(\lfloor(\) hi-to \() /\) ts \()\rfloor *\) ts + to BY ts DO
FOR \(i:=\max \left(T_{i}, 10\right)\) TO \(\min \left(T_{i}+\mathrm{ts}-1, \mathrm{hi}\right)\) DO
```

FOR i := 1 TO 8 DO
FOR j := 1 TO 8 DO
A[i,j] := B[j,i];
ENDFOR;
ENDFOR;
\downarrow Block!
FOR }\mp@subsup{T}{i}{}:=1\mathrm{ TO 8 BY 2 DO
FOR }\mp@subsup{T}{j}{}:=1\mathrm{ TO 8 BY 2 DO
FOR i := T
FOR j := T
A[i,j] := B[j,i];
ENDFOR;
ENDFOR;
ENDFOR;
ENDFOR;

```


Procedure Sorting
－The simplest way to increase VM performance is to sort the procedures of a program so that routines that are likely to call each other will fall on the same VM page．
－At link－time（or after link－time），build an un－directed call graph．Label each edge \(P \rightarrow Q\) with the frequency of calls between \(P\) and \(Q\) ．
－Collapse the graph in stages．At each stage select the edge \(P \xrightarrow{k} Q\) with \(\max\) weight \(k\) ，merge nodes \(P\) and \(Q\) ，collapse edges into \(P\) and \(Q\) into a single edge（adding the edge weights）．
－Nodes that are merged are put on the same page．

- The final, single, node contains: \(\left[\left[P_{1},\left[P_{3}, P_{6}\right],\left[P_{5},\left[P_{2}, P_{4}\right]\right],\left[P_{7}, P_{8}\right]\right]\right.\).
- We arrange the procedures in the order \(P_{1}, P_{3}, P_{6}, P_{5}, P_{2}, P_{4}, P_{7}, P_{8}\).

\section*{Exam Problem I (415.730/97)}
- Consider the following loop:

\section*{Homework}
\begin{tabular}{rl} 
FOR \(i:=\) & 1 TO \(n\) DO \\
\(S_{1}:\) & \(\mathrm{B}[i]:=\mathrm{C}[i-1] * 2 ;\) \\
\(S_{2}:\) & \(\mathrm{A}[i]:=\mathrm{A}[i]+\mathrm{B}[i-1] ;\) \\
\(S_{3}:\) & \(\mathrm{D}[i]:=\mathrm{C}[i] * 3 ;\) \\
\(S_{4}:\) & \(\mathrm{C}[i]:=\mathrm{B}[i-1]+5 ;\) \\
ENDFOR &
\end{tabular}
(1) List the data dependencies for the loop. For each dependence indicate whether it is a flow- \((\longrightarrow)\), anti- \((\longrightarrow)\), or output-dependence ( \(-\rightarrow\) ), and whether it is a loop-carried dependence or not.
(2) Apply loop fission to the loop. Show the resulting loops after the transformation.

\section*{Summary}

\section*{Summary}
- Compilers use a number of loop transformation techniques to convert loops to parallelizable form.
- The same transformations can also be used to improve memory hierarchy utilization of scientific (numerical ) codes.
- Nested loops can be interchanged, two adjacent loops can be joined into one (loop fusion), a single loop can be split into several loops (loop fission), etc
- David Bacon, Susan Graham, Oliver Sharp, Compiler Transformations for High-Performance Computing, Computing Surveys, No. 4, pp. 345-420, Dec, 1994. \({ }^{1}\)
- Steven Muchnick, Advanced Compiler Design \& Implementation, Chapter 20, pp. 669-704.
- Hennessy, Patterson, Computer Architecture - A Quantitative Approach, Section 1.7.

\footnotetext{
\({ }^{1}\) Much of the material in this lecture has been shamelessly stolen from this article.
}```

