
CSc 553

Principles of Compilation

34 : Memory Hierarchy Optimization

Department of Computer Science
University of Arizona

collberg@gmail.com

Copyright c© 2011 Christian Collberg

Memory Hierarchy

Memory Hierarchy I

Memory is organized hierarchically. Storage at the bottom of
the hierarchy is large and slow. Storage at the top of the
hierarchy is small and fast.

Accessing a memory word X could result in the following:
Swap in VM page containing X → Load memory line
containing X into E-cache → Load cache line containing X

into D-cache → Load X into register.

Notice that when moving X up the hierarchy, we don’t just
move X but the entire block on which X resides.

We should try to organize our code so that it makes efficient
use of every datum moved up the hierarchy.

Size
(Bytes)

Register File

BlkSz=8b

Primary Memory

Virtual Memory Pages

E−Cache

D−cacheI−cache

BlkSz=32b BlkSz=16b

BlkSz=16b

BlkSz=8k

BlkSz=64b

Access
Time

(Cycles)

10106

103

105

108

1012

1

102

106

2



Virtual Memory Pages

Register File

Primary Memory

E−Cache

D−cacheI−cache

X:

X:

X:

X:

X:

Memory Hierarchy IV

We will see various compiler transformations on loops that will
change the data access pattern to make efficient use of loaded
data. Often, the idea is to turn a stride-n access pattern
(which only uses one word from each cache line per loop
iteration), into a stride-1 access.

Loading code is no different from loading data. The I-cache is
of limited size, and we should make efficient use of the
instructions that are loaded. Ideally, we want loop bodies to
fit neatly into the I-cache. Compiler transforms can break
large loops into smaller ones, and merge small loops into
larger ones.

Memory Hierarchy V

We also want to make efficient use of virtual memory. We can
sort the procedures of a program so that procedures that are
likely to call each other fall on the same VM page.

Another technique is to reduce the size of procedures by
splitting them into two components: the code that is likely to
execute all the time (the main-line code) and the
infrequently-executed code (e.g. exception-handling code).
The primary components of procedures are grouped together,
and the secondary components are grouped together.

Transformations



Loop Transformations

We’ll look at transformations on FOR-loops that can affect
memory hierarchy utilization. The legality of these
transformations depends on the loops’ data dependencies.

Some of these transformations are also used by parallelizing
compilers. In general, a loop can’t be parallelized (reorganized
to be run on a multiprocessor machine) if it has any data
dependencies. Some transformations shown here can break
such dependencies so that the loop can be parallelized.

Some of the loop transformations do not improve performance
by themselves, but reorganize the loops so that they are
amenable to other optimizing loop transformations.

Loop Fission

Loop Fission I

Loop Fission breaks a loop into two or more independent
loops. Also known as loop distribution.

The smaller loops may fit better in the I-cache, may have
better D-cache utilization, or can more easily be parallelized.

Can the loop below be broken into smaller loops?

FOR I := 1 TO N DO

S1: A[I] := A[I] + B[I − 1];
S2: B[I] := C[I − 1] * X + V;

S3: C[I] := 1/B[I];

S4: D[I] := sqrt(C[I]);

ENDFOR

Loop Fission II

Dependencies

S2 δ< S1 S2 assigns a value to B[I] that will be used by S1 in
the next iteration.

S2 δ= S3 S2 assigns a value to B[I] that will be used by S3 in
the same iteration.

S3 δ< S2 S3 assigns a value to C[I] that will be used by S3 in
the next iteration.

S3 δ= S4 S3 assigns a value to C[I] that will be used by S4 in
the same iteration.

FOR I := 1 TO N DO

S1: A[I]:=A[I]+B[I − 1];
S2: B[I]:=C[I − 1]*X+V;
S3: C[I]:=1/B[I];

S4: D[I]:=sqrt(C[I]);

ENDFOR

1

01

0

S2

S3

S1

S4



Loop Fission III

If there are no cycles in the dependency graph, we can split
the loop into separate loops for each statement.
The loops must be ordered in a topological order according to
the graph.
If the graph has cycles, the statements in each strongly

connected component must be in the same loop.
Two nodes n1 and n2 of a graph G are in the same strongly
connected component C , if there is a path from n1 to n2 and
a path from n2 to n1.

FOR I := 1 TO N DO

S1: A[I]:=A[I]+B[I − 1];
S2: B[I]:=C[I − 1]*X+V;
S3: C[I]:=1/B[I];

S4: D[I]:=sqrt(C[I]);

ENDFOR

01

0

1

S3

S1

S4

S2

Loop Fission IV

The dependence graph has 3 strongly connected components
([S1], [S2,S3], [S4]) ⇒ the loop can be split into 3 separate
loops.
Since the graph has edges [S2,S3] → [S1] and [S2,S3] → [S4],
the [S2,S3] loop has to precede the other loops.

FOR J := 1 TO N DO

S2: B[J] := C[J − 1] * X + V;

S3: C[J] := 1/B[J];

ENDFOR;

FOR J := 1 TO N DO

S1: A[J] := A[J] + B[J − 1];
ENDFOR;

FOR J := 1 TO N DO

S4: D[J] := sqrt(C[J]);

ENDFOR;

I := N;

Loop Fusion

Loop Fusion I

Loop fusion merges two adjacent loops.
Fusion can reduce loop overhead, increase instruction
parallellism, improve locality, and improve load balance.

Original Loops

FOR i := 1 TO N DO

S1: A[i] := A[i] + k;

ENDFOR;

FOR i := 1 TO N DO

S2: B[i + 1] := B[i] + A[i];

ENDFOR;

Loops After Fusion

FOR i := 1 TO N DO

S1: A[i] := A[i] + k;

S2: B[i + 1] := B[i] + A[i];

ENDFOR;



Loop Fusion II

The loops must have the same loop bounds.
Two loops cannot be fused if ∃ a statement S1 in the 1st loop
and a statement S2 in the 2nd loop, such that ∃ a dependence
S2 ⇒ S1 in the fused loop.

FOR i := 1 TO N DO

S1: A[i] := A[i] + k;

ENDFOR;

FOR i := 1 TO N DO

S2: B[i + 1] := B[i] + A[i + 1];
ENDFOR;

⇓ Illegal!

FOR i := 1 TO N DO

S1: A[i] := A[i] + k;

S2: B[i + 1] := B[i] + A[i + 1];
ENDFOR;

Loop Reversal

Loop Reversal I

Loop reversal runs a loop backwards.
Reversal is legal only when there are no loop-carried
dependence relations.
Reversal can help with loop fusion. The loops below cannot
be directly fused, since there would be a forward dependence
between S2 and S3 (eg. for i = 5, S3 would use the old value
of C[6] rather than the new value computed by S2.).

Original Loops

FOR i := 1 TO N DO

S1: A[i] := B[i] + 1;

S2: C[i] := A[i] / 2;

ENDFOR;

FOR i := 1 TO N DO

S3: D[i] := 1 / C[i + 1];
ENDFOR;

Loop Reversal II

Neither loop has any loop-carried dependencies, hence they
can both be reversed. The reversed loops can be fused.

⇓ Reverse!

FOR i := N TO 1 DO

S1: A[i] := B[i] + 1;

S2: C[i] := A[i] / 2;

ENDFOR;

FOR i := N TO 1 DO

S3: D[i] := 1 / C[i + 1];
ENDFOR;

⇓ Fuse!

FOR i := N TO 1 DO

S1: A[i] := B[i] + 1;

S2: C[i] := A[i] / 2;

S3: D[i] := 1 / C[i + 1];
ENDFOR;



Loop Unswitching

Loop Unswitching I

Conditional statements within a loop can reduce I-cache
utilization and prevent parallelization. We can break out the
if-statement and replicate the loops, to get two loops without
any branches.
If the boolean expression E is loop invariant then we can
extract it out of the loop.

Original Loop

FOR i := 2 TO N DO

S1: A[i] := A[i] + k;

IF E THEN

S2: B[i] := A[i] + C[i];

ELSE

S3: B[i] := A[i − 1] + B[i − 1];
ENDIF;

ENDFOR;

Loop Unswitching II

If E could possibly throw an exception then we must guard it
with a test in case the loop is never executed.

Unswitched Loop

IF N > 1 THEN

IF E THEN

FOR i := 2 TO N DO

S1: A[i] := A[i] + k;

S2: B[i] := A[i] + C[i];

ENDFOR;

ELSE

FOR i := 2 TO N DO

S1: A[i] := A[i] + k;

S3: B[i] := A[i − 1] + B[i − 1];
ENDFOR;

ENDIF;

ENDIF;

Loop Peeling



Loop Peeling I

To peel a loop we unroll the first (or last) few iterations.

Peeling can remove dependencies created by the first (or last)
few iterations of a loop. It can also help with loop fusion by
matching the loop bounds of adjacent loops.

The first loop below can not be parallelized since there is a
flow dependence between iteration i = 2 and iterations
i = 3, · · · n.

Original Loops

FOR i := 2 TO N DO

S1: B[i] := B[i] + B[2];
ENDFOR;

FOR i := 3 TO N DO

S2: A[i] := A[i] + k;

ENDFOR;

⇓ Peel!

IF N >= 2 THEN

B[2] := B[2] + B[2];
ENDIF;

FOR i := 3 TO N DO

S1: B[i] := B[i] + B[2];
ENDFOR;

FOR i := 3 TO N DO

S2: A[i] := A[i] + k;

ENDFOR;

⇓ Fuse!

IF N >= 2 THEN

B[2] := B[2] + B[2];
ENDIF;

FOR i := 3 TO N DO

S1: B[i] := B[i] + B[2];
S2: A[i] := A[i] + k;

ENDFOR;

Loop Normalization

Loop Normalization I

Normalization converts all loops so that the induction variable
is initially 1 (or 0), and is incremented by 1 on each iteration.

Normalization can help other transformations, such as loop
fusion and peeling.

Original Loops

FOR i := 1 TO N DO

S1: A[i] := A[i] + k;

ENDFOR;

FOR i := 2 TO N+1 DO

S2: B[i] := A[i − 1] + B[i];

ENDFOR;



⇓ Normalize!

FOR i := 1 TO N DO

S1: A[i] := A[i] + k;

ENDFOR;

FOR i := 1 TO N DO

S2: B[i + 1] := A[i] + B[i + 1];
ENDFOR;

⇓ Fuse!

FOR i := 1 TO N DO

S1: A[i] := A[i] + k;

S2: B[i + 1] := A[i] + B[i + 1];
ENDFOR;

Loop Interchange

Loop Interchange I

Loop interchange moves an inner loop outwards in a loop
nest. It can improve locality (and hence cache performance)
by turning a stride-n access pattern into stride-1:

Original Loop

FOR i := 1 TO N DO

FOR j := 1 TO N DO

B[i] := B[i] + A[j , i];

ENDFOR;

ENDFOR;

Interchanged Loop

FOR j := 1 TO N DO

FOR i := 1 TO N DO

B[i] := B[i] + A[j , i];

ENDFOR;

ENDFOR;

I

A[4,2]=... A[4,3]=...

A[3,1]=... A[3,2]=... A[3,3]=...

A[2,1]=... A[2,2]=... A[2,3]=...

A[1,1] A[1,2] A[1,3]

A[4,1]=... A[4,2]=... A[4,3]=...

A[3,1]=... A[3,2]=... A[3,3]=...

A[2,1]=... A[2,2]=... A[2,3]=...

A[1,1] A[1,2] A[1,3]

O
R
I
G
I
N
A
L

I
N
T
E
R
C
H
A
N
G
E

J

J

I

A[4,1]=...



Loop Interchange III

A loop nest of two loops can be interchanged only if there
does not exist a loop dependence vector of the form (<,>).

The loops in the loop nest below can’t be interchanged. The
next slide shows the order in which the array elements are
assigned (dashed arrows); first in the original nest and then in
the interchanged nest. Solid arrows show dependencies.

This Loop Nest Can’t be Interchanged

FOR i := 2 TO N DO

FOR j := 1 TO N-1 DO

A[i , j] := A[i − 1, i + 1];
ENDFOR;

ENDFOR;

In the interchanged loop A[2,3] is needed to compute
A[3,2]. At that time A[2,3] has not been computed.

J

A[4,2]=... A[4,3]=...

A[3,1]=... A[3,2]=... A[3,3]=...

A[2,1]=... A[2,2]=... A[2,3]=...

A[1,1] A[1,2] A[1,3]

A[4,1]=... A[4,2]=... A[4,3]=...

A[3,1]=... A[3,2]=... A[3,3]=...

A[2,1]=... A[2,2]=... A[2,3]=...

A[1,1] A[1,2] A[1,3]

O
R
I
G
I
N
A
L

I
N
T
E
R
C
H
A
N
G
E

I

I

J

A[4,1]=...

Loop Blocking

Loop Blocking I

Also known as loop tiling.

The loop below assigns the transpose of B to A. Access to A is
stride-1, access to B is stride-n. This makes for poor
locality, and the loops will perform poorly on cached machines
(unless the arrays fit in the cache).

Loop blocking improves locality by iterating over a
sub-rectangle of the iteration space.

A pair of adjacent loops can be blocked if they can legally be
interchanged.

FOR i := 1 TO 8 DO

FOR j := 1 TO 8 DO

A[i , j] := B[j , i];

ENDFOR;

ENDFOR;



Loop Blocking II

To block a loop FOR i = lo TO hi DO we select the
following constants:

ts The block size.
to The block offset (0 ≤ to < ts). Each block will

start at an iteration such that i mod ts = to.

Blocked Loop

FOR Ti := ⌊(lo-to)/ts)⌋*ts+to
TO ⌊(hi-to)/ts)⌋*ts+to BY ts DO

FOR i := max(Ti,lo) TO min(Ti+ts-1,hi) DO

Loop Blocking III

FOR i := 1 TO 8 DO

FOR j := 1 TO 8 DO

A[i , j] := B[j , i];

ENDFOR;

ENDFOR;

⇓ Block!

FOR Ti := 1 TO 8 BY 2 DO

FOR Tj := 1 TO 8 BY 2 DO

FOR i := Ti TO min(Ti+1, 8) DO

FOR j := Tj TO min(Tj+1, 8) DO

A[i , j] := B[j , i];

ENDFOR;

ENDFOR;

ENDFOR;

ENDFOR;

Loop Blocking IV (A) – Original Loop

I

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

B

J

A

J

I

Loop Blocking IV (B) – Blocked Loop

I

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

B

J

I

A

J



Loop Blocking IV (B) – Block Movements

A

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

B

Procedure Sorting

Procedure Sorting I

The simplest way to increase VM performance is to sort the
procedures of a program so that routines that are likely to call
each other will fall on the same VM page.

At link-time (or after link-time), build an un-directed call
graph. Label each edge P → Q with the frequency of calls
between P and Q.

Collapse the graph in stages. At each stage select the edge

P
k
→ Q with max weight k, merge nodes P and Q, collapse

edges into P and Q into a single edge (adding the edge
weights).

Nodes that are merged are put on the same page.

Procedure Sorting – Example (a)

55
50

20

100

90 32

40

40

50

3

5

50

20

90 32

40

40

3

P1 P2

P3 P4

P6

P7

P5

P8

P1

P3

P6

P7

P5

P8

P2

P4



Procedure Sorting – Example (b)

40

90

3

50

40

40

3

55

52

50

40

52

3
40

40
3

P2

P4

P5

P3

P6

P1

P7 P8

P1

P7

P5

P8

P3

P6

P2

P4

P1

P3

P6

P2

P4

P7 P8

P5

P2

P4

P5

P3

P6

P7 P8

P1

Procedure Sorting – Example (c)

3

P2

P4

P5

P3

P6

P1

P7 P8

P2

P4

P5

P3

P6

P7 P8

P1

The final, single, node contains:
[[P1, [P3,P6], [P5, [P2,P4]], [P7,P8]].

We arrange the procedures in the order
P1,P3,P6,P5,P2,P4,P7,P8.

Homework

Exam Problem I (415.730/97)

Consider the following loop:

FOR i := 1 TO n DO

S1: B[i] := C[i − 1] * 2;

S2: A[i] := A[i] + B[i − 1];
S3: D[i] := C[i] * 3;

S4: C[i] := B[i − 1] + 5;

ENDFOR

1 List the data dependencies for the loop. For each dependence
indicate whether it is a flow- (−→), anti- (−→+ ), or
output-dependence (−→◦ ), and whether it is a loop-carried
dependence or not.

2 Apply loop fission to the loop. Show the resulting loops after
the transformation.



Summary

References

David Bacon, Susan Graham, Oliver Sharp, Compiler

Transformations for High-Performance Computing, Computing
Surveys, No. 4, pp. 345–420, Dec, 1994.1

Steven Muchnick, Advanced Compiler Design &

Implementation, Chapter 20, pp. 669–704.

Hennessy, Patterson, Computer Architecture – A Quantitative

Approach, Section 1.7.

1Much of the material in this lecture has been shamelessly stolen from this

article.

Summary

Compilers use a number of loop transformation techniques to
convert loops to parallelizable form.

The same transformations can also be used to improve
memory hierarchy utilization of scientific (numerical ) codes.

Nested loops can be interchanged, two adjacent loops can be
joined into one (loop fusion), a single loop can be split into
several loops (loop fission), etc.


