CSc 553
Principles of Compilation

34 : Memory Hierarchy Optimization

Department of Computer Science
University of Arizona

Memory Hierarchy |

.

3

.

Memory is organized hierarchically. Storage at the bottom of
the hierarchy is large and slow. Storage at the top of the
hierarchy is small and fast.

Accessing a memory word X could result in the following:
Swap in VM page containing X — Load memory line
containing X into E-cache — Load cache line containing X
into D-cache — Load X into register.

Notice that when moving X up the hierarchy, we don't just
move X but the entire block on which X resides.

We should try to organize our code so that it makes efficient
use of every datum moved up the hierarchy.

Memory Hierarchy

Access
Size BIkSz=8b Time
(Bytes) g (Cycles)
p 1
10 Register File
Bksz=32b__ BIkSz=16b
b :
I-cache D-cache
10° | Blksz=16b | 10
E-Cache
| Blksz=64b |
10° i H 10
Primary Memory
BIkSz=8k |
f10®

102 |

Virtual Memory Pages

X: Memory Hierarchy IV
Register File |
o~ @ We will see various compiler transformations on loops that will

I-cache D-cache .
change the data access pattern to make efficient use of loaded

data. Often, the idea is to turn a stride-n access pattern
E-Cache (which only uses one word from each cache line per loop

: iteration), into a stride-1 access.

@ Loading code is no different from loading data. The |-cache is
of limited size, and we should make efficient use of the
instructions that are loaded. Ideally, we want loop bodies to
fit neatly into the I-cache. Compiler transforms can break
large loops into smaller ones, and merge small loops into
larger ones.

Virtual Memory Pages

Memory Hierarchy V

@ We also want to make efficient use of virtual memory. We can

sort the procedures of a program so that procedures that are Tra nsformatlons

likely to call each other fall on the same VM page.

©

Another technique is to reduce the size of procedures by
splitting them into two components: the code that is likely to
execute all the time (the main-line code) and the
infrequently-executed code (e.g. exception-handling code).
The primary components of procedures are grouped together,
and the secondary components are grouped together.

Loop Transformations

@ We'll look at transformations on FOR-loops that can affect

memory hierarchy utilization. The legality of these . .
transformations depends on the loops’ data dependencies. Loop F|SS|on
Some of these transformations are also used by parallelizing

compilers. In general, a loop can’t be parallelized (reorganized

to be run on a multiprocessor machine) if it has any data

dependencies. Some transformations shown here can break

such dependencies so that the loop can be parallelized.

®

.

Some of the loop transformations do not improve performance
by themselves, but reorganize the loops so that they are
amenable to other optimizing loop transformations.

Loop Fission | Loop Fission Il

S, assigns a value to B[/] that will be used by S; in
he next iteration.
S, assigns a value to B[/] that will be used by S3 in
he same iteration.
S3 assigns a value to C[/] that will be used by S3 in
he next iteration.
S3 assigns a value to C[/] that will be used by S; in

@ Loop Fission breaks a loop into two or more independent
loops. Also known as loop distribution.

@ The smaller loops may fit better in the I-cache, may have
better D-cache utilization, or can more easily be parallelized.

@ Can the loop below be broken into smaller loops?

FOR / := 1 TO N DO

Si: AL := A[/] + B[/ —11; the same iteration.

S: BIN Cl/—11 * X + V; FOR / := 1 TO N DO

S3: ¢l 1/BI11; Sp: AU :=AL/I+BL/ —1]; e L e

S4: DO := sqrt(Cl/1); S>: BL/] [/ — 11*X+V; . o
ENDFOR S3: Cl:=1/BLI1;

Syt DO/ :=sqre(CM); 56

ENDFOR

Loop Fission Il

Loop Fission 1V

@ If there are no cycles in the dependency graph, we can split
the loop into separate loops for each statement.
@ The loops must be ordered in a topological order according to
the graph.
@ If the graph has cycles, the statements in each strongly
connected component must be in the same loop.
@ Two nodes ny and ny of a graph G are in the same strongly
connected component C, if there is a path from n; to ny and
a path from ny to ny.
FOR / := 1 TO N DO
Sy: AL :=A[/1+BI/ —11; 1
Syt BL/1:=C[/ — 11*X+V; e a

S3: CL1:=1/BLI1; ¢
S4: DU :=sqre(CL); G260
ENDFOR

Loop Fusion

@ The dependence graph has 3 strongly connected components
([S1], [S2, S3], [Sa]) = the loop can be split into 3 separate
loops.

@ Since the graph has edges [S,, S3] — [S1] and [S2, S3] — [Sal,
the [S,, S3] loop has to precede the other loops.

FOR J := 1 TO N DO
S2: BLJ] :=ClJ—11 * X + V;
Ss3: C[J] := 1/BLJ1;

ENDFOR;
FOR J :=1 TO N DO

Si: ALY :=A[J] + BLJ-11;
ENDFOR;

FOR J := 1 TO N DO
Ss: DLJ] := sqrt(ClJ]);
ENDFOR;

Loop Fusion |

@ Loop fusion merges two adjacent loops.
@ Fusion can reduce loop overhead, increase instruction
parallellism, improve locality, and improve load balance.
Original Loops

FOR / := 1 TO N DO

Syt A[] := AL] + k;
ENDFOR;
FOR / := 1 TO N DO

S»: BLi+11 := BL] + AL];

ENDFOR;
Loops After Fusion

FOR / := 1 TO N DO

Si: o ALY := AL + k;

Sp: BLi+11 := B[+ ALl;
ENDFOR -

Loop Fusion Il

@ The loops must have the same loop bounds.

@ Two loops cannot be fused if 3 a statement S; in the 1st loop
and a statement S; in the 2nd loop, such that 3 a dependence
S, = S in the fused loop.

170 N DO LOOP Reversal

ALl := AL + k;

170 N DO

BLi+1] := B[] + ALi+1];
ENDFOR;

U 111ega1:
FOR j := 1 TO N DO

Sy A[] := A[] + k;
S»: BLi+11 := B[] + A[i+1];

ENDFOR;
Loop Reversal | Loop Reversal Il
@ Loop reversal runs a loop backwards. @ Neither loop has any loop-carried dependencies, hence they
@ Reversal is legal <l)n|y when there are no loop-carried can both be reversed. The reversed loops can be fused.
° (Ilil\)/:rr]:aelncc:nrﬁ:l:;ov:ist.h loop fusion. The loops below cannot FOR i i= Nll_rge:e;se!

be directly fused, since there would be a forward dependence
between S, and S3 (eg. for i =5, S3 would use the old value S CLA = AL / 2,
of C[6] rather than the new value computed by S.). ENDFOR:

- |OriginalLoops| FOR i := N TO 1 DO

Sp: A[] := B[+ 1;

FOR / := 1 TO N DO Ss3: D[] := 1/ CLi+11;
Si: A[i] := B[+ 1; ENDFOR;
S: CLil = AL / 25 |} Fuser

ENDFOR; FOR / := N TO 1 DO

FOR / := 1 TO N DO Si: A[] := B[+ 1;
Sy: DL =1/ CLi+1]; Si CLil := AL / 2;

ENDFOR; S3: DLl :=1/ CLi+11;

Loop Unswitching |

@ Conditional statements within a loop can reduce I-cache
utilization and prevent parallelization. We can break out the
if-statement and replicate the loops, to get two loops without
any branches.

Loop U nSWltCh | ng @ If the boolean expression E is loop invariant then we can

extract it out of the loop.

= |Original Loop

FOR /i := 2 TO N DO
Sp: ALl := AL] + k;
IF E THEN
S2: B[l := AL1 + CLil;
ELSE
Szt B[] := A[i—1] + B[i—1];
ENDIF;
ENDFOR;

Loop Unswitching Il

@ If E could possibly throw an exception then we must guard it
with a test in case the loop is never executed.

IF N > 1 THEN H
N> 1 T Loop Peeling

FOR i := 2 TO N DO
Si: ALl := AL] + k;
S2: BLY := AL + CLil;
ENDFOR;
ELSE
FOR i := 2 TO N DO
Si: ALY := AL + k;
S3: BL) := A[i—1] + B[i—1];
ENDFOR;
ENDIF;

AT T L

Loop Peeling | | peer
IF N >= 2 THEN
B[2] := B[2] + B[2];

@ To peel a loop we unroll the first (or last) few iterations. ENDIF;
@ Peeling can remove dependencies created by the first (or last) FOR i := 3 TO N DO
few iterations of a loop. It can also help with loop fusion by Si: BL1 := B[] + B[2];
matching the loop bounds of adjacent loops. ENDFQR;
@ The first loop below can not be parallelized since there is a FOR j := 3 TO N DO
flow dependence between iteration i = 2 and iterations S2: AL := AL + k;
i= Son. ENDFOR;
[yaigd
IF N >= 2 THEN
FOR / := 2 TO N DO B[2] := B[2] + B[2];
S+ B[:= B[+ B[2]; ENDIF;
ENDFOR; FOR /i := 3 TO N DO
FOR i := 3 TO N DO Si: BI := B[l + B[2];
Sp: ALD := AL + k; St AL := AL + k;

ENDFOR; ENDFOR;

Loop Normalization |

@ Normalization converts all loops so that the induction variable
is initially 1 (or 0), and is incremented by 1 on each iteration.

. . @ Normalization can help other transformations, such as loop
Loop Normalization fusion and pecling.

Original Loops
FOR / := 1 TO N DO

Sp: ALl := ALI] + k;
ENDFOR;

FOR / := 2 TO N+1 DO
S»: BL1 := Ali—1] + BL];
ENDFOR;

U Normalize!

FOR / := 1 TO N DO
Si: A[] := ALI] + k;

ENDFOR;

FOR i i= 10 1 00 Loop Interchange
So: BLi+1] := A[i] + BLi+1];

ENDFOR;

»U« Fuse!

FOR i := 1 TO N DO

Syt A[i] := ALl + k;

S»: BLi+11 := A[il + BLi+1];
ENDFOR;

Loop Interchange |

AL AlL2) AlL3) o
R
@ Loop interchange moves an inner loop outwards in a loop AR A2 AR3E.. !
nest. It can improve locality (and hence cache performance) | IG
by turning a stride-n access pattern into stride-1: AR AB2. ABSF. N
Original L - 8
e | e L

FOR i := 1 TO N DO v
FOR j := 1 TO N DO J |
o nr- s N
BL] := BL + ALj,il; AL AL2] AL3] T
ENDFOR; £
ENDFOR; 2= AR 2 AR R
21} 22} 23] c
Interchanged Loop H
X 3= A2 AR A
FOR j := 1 TO N DO N
FOR / := 1 TO N DO (4= A2 A3 G
B[] := BLi] + ALj,il; £

ENDFOR;

ENDFOR -

Loop Interchange 111

@ A loop nest of two loops can be interchanged only if there
does not exist a loop dependence vector of the form (<, >).

@ The loops in the loop nest below can't be interchanged. The
next slide shows the order in which the array elements are
assigned (dashed arrows); first in the original nest and then in
the interchanged nest. Solid arrows show dependencies.

- ‘ This Loop Nest Can't be Interchanged |

FOR / := 2 TO N DO
FOR j 1 TO N-1 DO
Alij] o= ALI-1,i+1];
ENDFOR;
ENDFOR;

Loop Blocking

@ In the interchanged loop A[2,3] is needed to compute
A[3,2]. At that time A[2,3] has not been computed.

AlL1] Al12] Al13]

F :\; o
r»z-0~-®0

e 421 A
3 7

N

A[1,1] 1,2] A[1,3]
w1 121 03] N
E
2= AR22= 2.3 R
C
I H

ABAJ= B.2=.. AB3=

A
N
A= A2 4,3)= G
v E

Loop Blocking |

@ Also known as loop tiling.

@ The loop below assigns the transpose of B to A. Access to A is
stride-1, access to B is stride-n. This makes for poor
locality, and the loops will perform poorly on cached machines
(unless the arrays fit in the cache).

@ Loop blocking improves locality by iterating over a
sub-rectangle of the iteration space.

@ A pair of adjacent loops can be blocked if they can legally be
interchanged.

FOR / := 1 TO 8 DO
FOR j := 1 TO 8 DO
Alij] := BLj,iT;
ENDFOR;
ENDFOR;

Loop Blocking I Loop Blocking Ill

@ To block a loop |[FOR / = 1o TO hi DO|we select the

following constants:
The block size.

The block offset (0 < to < ts). Each block will U, Block!
start at an iteration such that i mod ts = to. FOR T; := 1 TO 8 BY 2 DO
FOR T; := 1 TO 8 BY 2 DO
FOR i := T; TO min(T;+1, 8) DO
FOR T; := |(lo-to)/ts)|*ts+to FOR j := T; TO min(T;+1, 8) DO
TO | (hi-to)/ts) [*ts+to BY ts DO Ali,j1 := BLj,il;
FOR / := max(T;,10) TO min(T;+ts-1,hi) DO ENDFOR;
ENDFOR;
ENDFOR;
ENDFOR;

Loop Blocking IV (A) — Original Loop Loop Blocking IV (B) — Blocked Loop

eecocccoo;
000000 oo
0000000 O
00000000
WOOOO0OO0O0 0
XXX xxxr
XXXy
00000000
00000000~
0000000 0"

[oNoNoNoNoNoNoNOL
[oNcNoNoNONONONOL]
[oNcNoNONONONONON
OO0OO0OO0OO0O00O0"

Loop Blocking IV (B) — Block Movements

Procedure Sorting

[ONoNONOR
OO0 OO~

OO0OO0OO0OO0O0O0
0000000
/00000000

@

Procedure Sorting | Procedure Sorting — Example (a)

®

The simplest way to increase VM performance is to sort the
procedures of a program so that routines that are likely to call
each other will fall on the same VM page.

.

At link-time (or after link-time), build an un-directed call
graph. Label each edge P — Q with the frequency of calls
between P and Q.

Collapse the graph in stages. At each stage select the edge

.

pL Q with max weight k, merge nodes P and Q, collapse
edges into P and Q into a single edge (adding the edge
weights).

@ Nodes that are merged are put on the same page.

Procedure Sorting — Example (b) Procedure Sorting — Example (c)

3
Pr Ps

) [P 5 [P
0 0 Ps Py Ps @ The final, single, node contains:
p| || Pl | P [[P1.[Ps. Ps]. [Ps, [P2, Pal, [Pz, Pe]].

@ We arrange the procedures in the order

& “® “ @ Py, Ps, Ps, Ps, Py, Py, Py, Ps.

T[T

Exam Problem | (415.730/97)

@ Consider the following loop:

FOR / := 1 TO n DO
Si: B[] :=Cli—1] * 2;
Homework Syi ALA i= AL + BLi—11;
S3: D[/l := C[i] * 3;
Sa: Cli] := B[i—1] + 5;
ENDFOR

@ List the data dependencies for the loop. For each dependence
indicate whether it is a flow- (—), anti- (—), or
output-dependence (—e-), and whether it is a loop-carried
dependence or not.

@ Apply loop fission to the loop. Show the resulting loops after
the transformation.

Summary

Summary

@ Compilers use a number of loop transformation techniques to
convert loops to parallelizable form.

@ The same transformations can also be used to improve
memory hierarchy utilization of scientific (numerical) codes.

@ Nested loops can be interchanged, two adjacent loops can be
Jjoined into one (loop fusion), a single loop can be split into
several loops (loop fission), etc.

References

@ David Bacon, Susan Graham, Oliver Sharp, Compiler
Transformations for High-Performance Computing, Computing
Surveys, No. 4, pp. 345-420, Dec, 1994.1

@ Steven Muchnick, Advanced Compiler Design &
Implementation, Chapter 20, pp. 669-704.

@ Hennessy, Patterson, Computer Architecture — A Quantitative
Approach, Section 1.7.

"Much of the material in this lecture has been shamelessly stolen from this
article.

