
CSc 553

Principles of Compilation

10 : Garbage Collection — Copying Collection

Department of Computer Science
University of Arizona

collberg@gmail.com

Copyright c© 2011 Christian Collberg

Introduction

Copying Collection

Even if most of the heapspace is garbage, a mark and sweep
algorithm will touch the entire heap. In such cases it would be
better if the algorithm only touched the live objects.

Copying collection is such an algorithm. The basic idea is:
1 The heap is divided into two spaces, the from-space and the

to-space.
2 We start out by allocating objects in the from-space.
3 When from-space is full, all live objects are copied from

from-space to to-space.
4 We then continue allocating in to-space until it fills up, and a

new GC starts.

Copying Collection. . .

An important side-effect of copying collection is that we get
automatic compaction – after a collection to-space consists of
the live objects in a contiguous piece of memory, followed by
the free space.

This sounds really easy, but · · · :

We have to traverse the object graph (just like in mark and
sweep), and so we need to decide the order in which this
should be done, depth-first or breadth-first.
DFS requires a stack (but we can, of course, use pointer
reversal just as with mark and sweep), and BFS a queue. We
will see later that encoding a queue is very simple, and hence
most implementations of copying collection make use of BFS.



Copying Collection. . .

This sounds really easy, but · · ·

An object in from-space will generally have several objects
pointing to it. So, when an object is moved from from-space
to to-space we have to make sure that we change the pointers
to point to the new copy.

Copying Collection. . .

Mark-and-sweep touches the entire heap, even if most of it is
garbage. Copying collection only touches live cells.

Copying collection divides the heap in two parts: from-space
and to-space.

to-space is automatically compacted.

How to traverse object graph: BFS or DFS?

How to update pointers to moved objects?

Algorithm:

1 Start allocating in from-space.

2 When from-space is full, copy live objects to to-space.

3 Now allocate in to-space.

Copying Collection. . .

Traversing the Object Graph:

Most implementations use BFS.

Use the to-space as the queue.

Updating (Forwarding) Pointers:

When an object is moved its new address is stored first in the
old copy.

Example:

GC

roots:

from−space to−space

roots:

from−space to−space

Copying Collection Algorithm

1 scan := next := ADDR(to-space)

[scan · · · next] hold the BFS queue.
Objects above scan point into to-space. Objects between
scan and next point into from-space.

2 Copy objects pointed to by the root pointers to to-space.

3 Update the root pointers to point to to-space.

4 Put each object’s new address first in the original.

5 Repeat (recursively) with all the pointers in the new
to-space.

1 Update scan to point past the last processed node.
2 Update next to point past the last copied node.

Continue while scan < next.



Copying Collection Example. . . (A)

scan

rootsroots
A

C

D

E

F

from−space

B

from−space
to−space

A

B

C

D

E

F

D

B

next

Copying Collection Example. . . (B)

F

roots to−space

D

B

next

scan

from−space

A

B

C

D

E

F

roots to−space

D

B

scan

next

E

from−space

A

B

C

D

E

Cost of Garbage Collection

The size of the heap is H, the amount of reachable memory is
R , the amount of memory reclaimed is H − R .

H
e
a
p

Heapsize=H

Reachable=R Reclaimed=H − R

amortized GC cost =
time spent in GC

amount of garbage collected

=
time spent in GC

H − R

Cost of GC — Copying Collection

H
e
a
p

H/2 − RR

Reachable= Reclaimed=

Heapsize=H

from:H/2 to:H/2

The breadth first search phase touches all live nodes. Hence,
it takes time c3R , for some constant c3. c3 ≈ 10?

The heap is divided into a from-space and a to-space, so each
collection reclaims H

2
− R words.

GC cost =
c3R

H

2
− R

≈
10R

H

2
− R



Cost of GC — Copying Collection. . .

e
a
p

H

copy

R H/2 − R

from:H/2 to:H/2

If there are few live objects (H ≫ R) the GC cost is low.

If H = 4R , we get

GC cost =
c3R

4R
2

− R
≈ 10.

This is expensive: 4 times as much memory as reachable data,
10 instruction GC cost per object allocated.

Readings and References

Read Scott, pp. 387–388.


