CSc 553

Principles of Compilation

Introduction
10 : Garbage Collection — Copying Collection

Department of Computer Science
University of Arizona

Copying Collection Copying Collection. ..

@ Even if most of the heapspace is garbage, a mark and sweep @ An |mpo_rtant mde-effect of copying Col-‘ECtlon is that we get
. . . X automatic compaction — after a collection to-space consists of

algorithm will touch the entire heap. In such cases it would be the Ii biects i i . f followed b

better if the algorithm only touched the live objects. € lve objects in a contiguous piece of memory, Toflowed by

the free space.

@ Copying collection is such an algorithm. The basic idea is: K
Pying & @ This sounds really easy, but - -:

@ The heap is divided into two spaces, the from-space and the

to-space. s We have to traverse the object graph (just like in mark and

@ We start out by allocating objects in the from-space. sweep), and so we need to decide the order in which this

© When from-space is full, all live objects are copied from should be‘done, depth-first or breadth-first.)
from-space to to-space. @ DFS requires a stack (but we can, of course, use pointer

© We then continue allocating in to-space until it fills up, and a reversal just as with mark and sweep), and BFS a queue. We
new GC starts. will see later that encoding a queue is very simple, and hence

most implementations of copying collection make use of BFS.

Copying Collection. .. Copying Collection. ..

@ Mark-and-sweep touches the entire heap, even if most of it is
garbage. Copying collection only touches live cells.
@ Copying collection divides the heap in two parts: from-space
@ This sounds really easy, but - - - and to-space.
An object in from-space will generally have several objects © to-space is automatically compacted.

pointing to it. So, when an object is moved from from-space))
to to-space we have to make sure that we change the pointers © How to traverse object graph: BFS or DFS?
to point to the new copy. @ How to update pointers to moved objects?

Algorithm:
@ Start allocating in from-space.
@ When from-space is full, copy live objects to to-space.

© Now allocate in to-space.

Copying Collection. .. Copying Collection Algorithm

Traversing the Object Graph: @ scan := next := ADDR(to-space)

@ Most implementations use BFS. s [scan - next] hold the BFS queue.
Objects above scan point into to-space. Objects between
scan and next point into from-space.

@ Copy objects pointed to by the root pointers to to-space.
© Update the root pointers to point to to-space.

@ Use the to-space as the queue.
Updating (Forwarding) Pointers:
@ When an object is moved its new address is stored first in the

old copy.
Example: Q Put each object’s new address first in the original.
from-space _ to-space from-space _ to-space © Repeat (recursively) with all the pointers in the new
o [} PiaEhai to-space.
#> @ Update scan to point past the last processed node.
® Update next to point past the last copied node.

\D\:l:\:l d__/'l:\:l Continue while scan < next.
roots: roots:

Copying Collection Example. .. (A)

Copying Collection Example. . .

Cost of Garbage Collection

Cost of GC — Copying Collection

@ The size of the heap is H, the amount of reachable memory is

Heapsize=H
. . P
R, the amount of memory reclaimed is H — R. :
H P —
e Reachable= Reclaimed=
R Hj2—
a
P) .
@ The breadth first search phase touches all live nodes. Hence,
Reachable=R Reclaimed=H — R . .
it takes time c3R, for some constant ¢3. ¢3 ~ 107
. time spent in GC @ The heap is divided into a from-space and a to-space, so each
amortized GC cost = —mM ————————— 5 . H
amount of garbage collected collection reclaims 5 — R words.
time spent in GC
:— R GC cost = Hq =~ HlOR
7-R 5-R

Cost of GC — Copying Collection. . . Readings and References

@ If there are few live objects (H > R) the GC cost is low. ® Read Scott, pp. 387-388

@ If H=4R, we get
GC cost = 4‘:3R
TR

~ 10.

This is expensive: 4 times as much memory as reachable data,
10 instruction GC cost per object allocated.

