
CSc 553

Principles of Compilation

11 : Garbage Collection — Generational

Collection

Department of Computer Science

University of Arizona

collberg@gmail.com

Copyright c© 2011 Christian Collberg

Generational Collection

Works best for functional and logic languages (LISP, Prolog,
ML, . . . ) because

1 they rarely modify allocated cells
2 newly created objects only point to older objects ((CONS A B)

creates a new two-pointer cell with pointers to old objects),
3 new cells are shorter lived than older cells, and old objects are

unlikely to die anytime soon.

Generational Collection. . .

Generational Collection therefore
1 divides the heap into generations, G0 is the youngest, Gn the

oldest.
2 allocates new objects in G0.
3 GC’s only newer generations.

We have to keep track of back pointers (from old generations
to new).

Generational Collection. . .

Functional Language:

(cons ’a ’(b c))

m
t1: x ← new ’(b c);

t2: y ← new ’a;

t3: return new cons(x, y)

A new object (created at time t3) points to older objects.

Object Oriented Language:

t1: T ← new Table(0);

t2: x ← new Integer(5);

t3: T.insert(x);

A new object (created at time t2) is inserted into an older
object, which then points to the news object.



Generational Collection. . .

Remembered Set: Roots:

G0G1G2

Generational Collection – After GC(G0)

Remembered Set: Roots:

G1G2 G ′
0

Generational Collection. . .

Since old objects (in Gn · · ·G1) are rarely changed (to point to
new objects) they are unlikely to point into G0.

Apply the GC only to the youngest generation (G0), since it is
most likely to contain a lot of garbage.

Use the stack and globals as roots.

There might be some back pointers, pointing from an older
generation into G0. Maintain a special set of such pointers,
and use them as roots.

Occasionally GC older (G1 · · ·Gk) generations.

Use either mark-and-sweep or copying collection to GC G0.

Remembering Back Pointers

Remembered List
After each pointer update x.f := · · · , the compiler adds code to
insert x in a list of updated memory locations:

x↑.f := · · ·
⇓

x↑.f := · · · ;
insert(UpdatedList, x);



Remembering Back Pointers

Remembered Set
As above, but set a bit in the updated object so that it is inserted
only once in the list:

x↑.f := · · ·
⇓

x↑.f := · · · ;
IF NOT x↑.inserted THEN

insert(UpdatedList, x);

x.↑inserted := TRUE;

ENDIF

Remembering Back Pointers. . .

Card marking

Divide the heap into “cards” of size 2k .

Keep an array dirty of bits, indexed by card number.

After a pointer update x↑.f := · · · , set the dirty bit for card
c that x is on:

x↑.f := · · ·
⇓

x↑.f := · · · ;
dirty[x div 2k] := TRUE;

Remembering Back Pointers. . .

Page marking I

Similar to Card marking, but let the cards be virtual memory
pages.

When x is updated the VM system automatically sets the
dirty bit of the page that x is on.

We don’t have to insert any extra code!

Remembering Back Pointers. . .

Page marking II

The OS may not let us read the VM system’s dirty bits.

Instead, we write-protect the page x is on.

On an update x↑.f := · · · a protection fault is generated.
We catch this fault and set a dirty bit manually.

We don’t have to insert any extra code!



Cost of Garbage Collection

The size of the heap is H, the amount of reachable memory is
R , the amount of memory reclaimed is H − R .

H
e
a
p

Heapsize=H

Reachable=R Reclaimed=H − R

amortized GC cost =
time spent in GC

amount of garbage collected

=
time spent in GC

H − R

Cost of GC — Generational Collection

H
e
a
p

tofrom

Heapsize=H

Reachable=R Reclaimed

G0G2 G1

Assume the youngest generation (G0) has 10% live data, i.e.
H = 10R .

Assume we’re using copying collection for G0.

GC costG0
=

c3R
H

2
− R

=
c3R

10R
2
− R

≈
10R

4R
= 2.5

Cost of GC — Generational Collection. . .

H
e
a
p

tofrom

Heapsize=H

Reachable=R Reclaimed

G0G2 G1

GC costG0
=

c3R
H

2
− R

=
c3R

10R
2
− R

≈
10R

4R
= 2.5

If R ≈ 100 kilobytes in G0, then H ≈ 1 megabyte.

In other words, we’ve wasted about 900 kilobytes, to get 2.5
instruction/word GC cost (for G0).

Readings and References

Read Scott, pp. 388–389.


