Object-Oriented Languages

CSc 553

@ Object-oriented languages extend imperative languages with:
@ A classification scheme that allows us to specify is-a as well as

has-a relationships. Has-a is supported by Pascal, where we

OO Languages — Introduction can declare that one data item has another item (a record

variable has-a record field). Object-Pascal, Oberon, etc,

. extends this capability with inheritance which allows us to

Department of Computer Science state that one data item is (an extension of) another item
University of Arizona @ Late binding, which allows us to select between different

implementations of the same abstract data type at run-time.

Principles of Compilation

Object-Oriented Languages. . . Compiling OO Languages

@ Runtime type checking (a variable of type ref T may only
reference objects of type T or T's subtypes).

@ @ Polymorphism, which is the ability of a variable to store values
of different types. OO languages support a special kind of
polymorphism, called inclusion polymorphism, that restricts

@ Because of the polymorphic nature of OO languages, we can't
always know (at compile-time) the type of the object that a

the values that can be stored in a variable of type T to values given variable will refer to at run-time. When we invoke a
of type T or subtypes of T. method we can't actually know which piece of code we should
@ Data encapsulation. Data (instance variables) and operations execute. Finding the right piece of code is called method
(methods) are defined together. lookup. It can be done by name (Objective-C) or number
© Templates and objects. A template (class or prototype) (CH++).

describes how to create new objects (instances of abstract

data types). @ Most OO languages rely on dynamic allocation. Garbage

collection is a necessary part of the runtime system of a
compiler for an OO language (C++ non-withstanding). This
requires runtime type description.

Example

Example in Java

Object-Oriented Example

TYPE Shape = CLASS

x, y : REAL;

METHOD draw(); BEGIN ---; END;

METHOD move(X,Y:REAL); BEGIN x := x+X; END;
END;

TYPE Square = Shape CLASS
side : REAL;
METHOD draw(); BEGIN ---; END;
END;
TYPE Circle = Shape CLASS
radius : REAL;

METHOD draw(); BEGIN ---; END;
METHOD area():REAL; BEGIN --- END;
END;

// Example in Java

class Shape {
double x, y;
void draw(); { --- }
void move(double X, double Y); {x = x+X; }}
class Square extends Shape {
double side;
void draw(); { ---}}
class Circle extends Shape {
double radius;
void draw(Q; { --- }
double area(); { --- }}

Example in Modula-3 (A)

(* Example in Modula-3 *)
TYPE Shape = OBJECT

x, vy : REAL

METHODS

draw() := DefaultDraw; move(X, Y : REAL) := Move
END;
Square = Shape OBJECT

side : REAL

METHODS

draw() := SquareDraw
END;

Circle = Shape OBJECT
radius : REAL
METHODS

draw() := CirlceDraw; area() := ComputeArea
END:

Example in Modula-3 (B)

Example in Oberon-2

(x Example in Modula-3 (continued) *)
PROCEDURE Move (Self : Shape; X, Y : REAL) =
BEGIN --- END Move;

PROCEDURE DefaultDraw (Self : Shape) =
BEGIN --- END DefaultDraw;

PROCEDURE SquareDraw (Self : Square) =
BEGIN --- END SquareDraw;
PROCEDURE CircleDraw (Self :
BEGIN ... END CircleDraw;
PROCEDURE ComputeArea (Self : Circle) : REAL =
BEGIN --- END ComputeArea;

Circle) =

Record Layout

TYPE Shape = RECORD x, y : REAL END;
Square = RECORD (Shape) side : REAL END;
Circle = RECORD (Shape) radius : REAL END;
PROCEDURE (Self : Shape) Move (X, Y : REAL) =
BEGIN --- END Move;
PROCEDURE (Self : Shape) DefaultDraw () =
BEGIN ... END DefaultDraw;
PROCEDURE (Self : Square) SquareDraw () =
BEGIN --- END SquareDraw;
PROCEDURE (Self : Circle) CircleDraw () =
BEGIN ... END CircleDraw;
PROCEDURE (Self : Circle) ComputeArea () : REAL =

BEGIN --- END ComputeArea;

Record Layout

@ Single inheritance is implemented by concatenation, i.e. the
instance variables of class C are
@ the variables of C's supertype, followed by
@ the variables that C declares itself.

I nheritance Record
H erarchy Layout

Ca G’s instance vars
o Gi’s instance vars
‘ G

Record Layout Record Layout. . .

S x: REAL
@ The offsets of the variables that C inherits from its supertype [
will be the same as in the supertype itself.
. . . L N TYPE Shape = Q x: REAL
In th I herits fi hich inherits fi .
@ In |.s example, C.3 inherits from C, which inl er.l s from G CLASS x,y: REAL; END; T
@ Gz will have the fields from C; followed by the fields from G, -
followed by Gs's own fields. The order is significant. TYPE Square = Shape S1der FEA
Inheri tance Record CLASS side:REAL: END; c x: REAL
H erarchy Layout ’ ’
y: REAL
s tnstance vars CLASS radius:REAL; END; Inheri tance
oD [immance vars A rarhy
VAR S:Shape;
o VAR Q:Square; @@
VAR C:Circle;

Record Layout. . .

@ An OO language compiler would translate the declarations in
the previous slide into something similar to this:

TYPE Shape=POINTER TO RECORD

x, y: REAL; Templates

END;

TYPE Square=POINTER TO RECORD
x, y: REAL;
side:REAL;

END;

TYPE Circle=POINTER TO RECORD
x, y: REAL;
radius:REAL;

END;

VAR S:Shape; Q:Square; C:Circle;

Class Templates Class Templates. . .

@ Square’s x,y fields are inherited from Shape. Their offsets
To support late binding, runtime typechecking, etc, each class is are the same as in Shape.

represented by a template at runtime. Each template has pointers TYPE $TenplateT-POINTER TO RECORD
to the class’ methods and supertype.

ShapesTem ate ‘Shapesdr aw parent : $TemplateT;
[roor | N move : ADDRESS;
Shspesmv‘é\‘ draw : ADDRESS;
END;

TYPE Square=POINTER TO RECORD
$template : $TemplateT;

x, y : REAL;
ovc\esdva’w side : REAL;
END;

Girelesarea;’
’

CONST Square$Template:$TemplateT =

[parent= ADDR(Shape$Template);
move = ADDR(Shape$move);

draw = ADDR(Sanare$draw): 1:

Class Templates. . .

Each method is a procedure with an extra argument (SELF), a
pointer to the object through which the method was invoked.

TYPE Shape = CLASS M h d L k
x, y : REAL;
METHOD draw (); BEGIN ---; etho 00 up
METHOD move (X, Y : REAL);

BEGIN x := x+X; --- END;
END;
4
PROCEDURE Shape$move (SELF : Shape; X,Y:REAL);
BEGIN
SELF~.x := SELF~.x + X;
SELF-.y := SELF-.y + X;

END;

Method Invocation Method Invocation. . .

VAR Q : Square;

Sopestemate o BEGIN
Q := NEW (Square);

Squar esTenpl at e

Q.x :=1; Q.y := 3; Q.side := 15;

@ Sending the message draw to Q: Q.draw(); Q.move(20, 30);

@ Get Q's template, T.

@ Get draw's address at offset 4 END;
in T
© Jump to draw's address, with BEGIN

Q as the first argument. Q := malloc(SIZE(Square));
Q" .$template := Square$Template;
Q7.x :=1; Q".y := 3; Q" .side := 15;
Q" .$template”.draw(Q);
Q" .$template”.move(Q, 20, 30);
END;

Exam Problem Exam Problem I...

TYPE U = T CLASS [
x : REAL; k : INTEGER;
s "TYPE U = T CLASS" means that U inherits from T. METHOD R(x:INTEGER); BEGIN --- END R;

s NEW T means that a new object of type T is created. METHOD Q(r:REAL); BEGIN --- END Q;
@ All methods are virtual, i.e. a method in a subclass overrides a

@ In the following object-oriented program

-] 1;
method with the same name in a superclass. VARt : T; u: U;
PROGRAM X; BEGIN
TYPE T = CLASS [t := NEW T; u := NEW U; &
v : INTEGER;c : CHAR; END
METHOD P (x:INTEGER); BEGIN --- END P;
METHOD Q (x:CHAR); BEGIN --- END Q; @ Draw a figure that describes the state of the program at point
1; <. It should have one element for each item stored in memory

(i.e. global/heap variables, templates, method object code,
etc.) and should explicitly describe what each pointer points
to.

Summary

Summary

Readings and References

@ Read Scott: 467-489, 497-504

Summary. ..

@ For single inheritance languages, an instance of a class C
consists of (in order):
@ A pointer to C's template.
@ The instance variables of C’s ancestors.
© C's instance variables.
@ For single inheritance languages, subtype checks can be done
in O(1) time.
@ Method invocation is transformed to an indirect call through
the template.
@ If we can determine the exact type of an object variable at

compile time, then method invocations through that variable
can be turned into “normal” procedure calls.

@ A template for class C consists of (in order):
@ A pointer to the template of C's parent.
@ The method addresses of C's ancestors.
© Addresses of C's methods.
@ Other information needed by the runtime system, such as
@ The size of a C instance
@ C's pre- and postorder numbers, if the O(1) subtype test
algorithm is used.
o C's type code.
@ A type description of C’s instance variables. Needed by the
garbage collector.

Confused Student Email

What happens when both a class and its subclass have
an instance variable with the same name?

@ The subclass gets both variables. You can get at both of
them, directly or by casting. Here's an example in Java:

class Cl {int a;}
class C2 extends C1 {double a;}

class C {
static public void main(String[] arg) {

Cl x = new C1(); C2 y = new C20);
x.a = 5; y.a = 5.5;
((cy).a = 5;

