
CSc 553

Principles of Compilation

16 : OO Languages — Polymorphism

Department of Computer Science
University of Arizona

collberg@gmail.com

Copyright c© 2011 Christian Collberg

Runtime Type Checking

Inclusion Polymorphism

Consider the last two lines of the example in the following slide:

In L1, S points to a Shape object, but it could just as well
have pointed to an object of any one of Shape’s subtypes,
Square and Circle.

If, for example, S had been a Circle, the assignment C := S

would have been perfectly OK. In L2, however, S is a Shape

and the assignment C := S is illegal (a Shape isn’t a
Circle).

Inclusion Polymorphism

VAR S : Shape; Q : Square; C : Circle;

BEGIN

Q := NEW (Square);

C := NEW (Circle);

S := Q; (* OK *)

S := C; (* OK *)

Q := C; (* Compile-time Error *)

L1: S := NEW (Shape);

L2: C := S; (* Run-time Error *)

END;

Typechecking Rules

TYPE T = CLASS · · · END;

U = T CLASS · · · END;

S = T CLASS · · · END;

VAR t,r : T; u : U; s : S;

A variable of type T may refer to an object of T or one of T’s
subtypes.

Assignment Compile-time Run-Time
t := r; Legal Legal
t := u; Legal Legal
u := t; Legal Check
s := u; Illegal

Run-time Type Checking

Modula-3 Type-test Primitives:

ISTYPE(object, T) Is object’s type a subtype of T?

NARROW(object, T) If object’s type is not a subtype of T, then
issue a run-time type error. Otherwise return
object, typecast to T.

TYPECASE Expr OF Perform different actions depending on the
runtime type of Expr.

The assignment s := t is compiled into s := NARROW(t,

TYPE(s)).

Run-time Type Checking. . .

The Modula-3 runtime-system has three functions that are
used to implement typetests, casts, and the TYPECASE

statement

NARROW takes a template and an object as parameter. It
checks that the type of the object is a subtype of the type of
the template. If it is not, a run-time error message is
generated. Otherwise, NARROW returns the object itself.

1 ISTYPE(S,T : Template) : BOOLEAN;

2 NARROW(Object, Template) : Object;

3 TYPECODE(Object) : CARDINAL;

Run-time Checks

Casts are turned into calls to NARROW, when necessary:

VAR S : Shape; VAR C : Circle;

BEGIN

S := NEW (Shape); C := S;

END;

⇓
VAR S : Shape; VAR C : Circle;

BEGIN

S := malloc (SIZE(Shape));

C := NARROW(S, Circle$Template);

END;

Implementing ISTYPE

We follow the object’s template pointer, and immediately
(through the templates’ parent pointers) gain access to it’s
place in the inheritance hierarchy.

PROCEDURE ISTYPE (S, T : TemplatePtr) : BOOLEAN;

BEGIN

LOOP

IF S = T THEN RETURN TRUE; ENDIF;

S := S^.parent;

IF S = ROOT THEN RETURN FALSE; ENDIF;

ENDLOOP

END ISTYPE;

Implementing NARROW

NARROW uses ISTYPE to check if S is a subtype of T. Of
so, S is returned. If not, an exception is thrown.

PROCEDURE NARROW(T:TemplatePtr; S:Object):Object;

BEGIN

IF ISTYPE(S^.$template, T) THEN

RETURN S (* OK *)

ELSE WRITE "Type error"; HALT;

ENDIF;

END NARROW;

Run-time Checks — Example

TYPE T = CLASS [· · ·];
S = T CLASS [· · ·];
U = T CLASS [· · ·];
V = U CLASS [· · ·];
X = S CLASS [· · ·];
Y = U CLASS [· · ·];
Z = U CLASS [· · ·];

VAR x : X;

T

S

X Z

U

V Y

Run-time Checks — Example. . .

ISTYPE(x, T)ROOT

parent:

.....

T$Template

ISTYPE(,)

template

instance
vari−
ables

x:

parent:

.....
parent:

.....

parent:

.....

parent:

.....

parent:

.....

parent:

.....

S$Template U$Template

X$Template V$Template Y$Template Z$Template

Run-time Checks – An O(1) Algorithm

The time for a type test is proportional to the depth of the
inheritance hierarchy. Two algorithms do type tests in
constant time:

1 Norman Cohen, “Type-Extension Type Tests can be Performed
in Constant Time.”

2 Paul F.Dietz, “Maintaining Order in a Linked List”.

The second is more efficient, but requires the entire type
hierarchy to be known. This is a problem in separately
compiled languages.

SRC Modula-3 uses Dietz’ method and builds type hierarchies
of separately compiled modules at link-time.

These algorithms only work for single inheritance.

Run-time Checks – Alg. II (b)

In the Compiler (or Linker):

1 Build the inheritance tree.

2 Perform a preorder traversal and assign preorder numbers to
each node.

3 Similarly, assign postorder numbers to each node.

4 Store T’s pre- and postorder numbers in T’s template.

In the Runtime System:

PROCEDURE ISTYPE (

S, T : TemplatePtr) : BOOLEAN;

BEGIN

RETURN (T.pre ≤ S.pre) AND (T.post ≥ S.post);

END ISTYPE;

Run-time Checks – Alg. II (c)

TYPE

T = CLASS [· · ·];
S = T CLASS [· · ·];
U = T CLASS [· · ·];
V = U CLASS [· · ·];
X = S CLASS [· · ·];
Y = U CLASS [· · ·];
Z = U CLASS [· · ·];

Z

pre=1 T

Upre=4 post=6S post=2pre=2

X
pre=3

post=1

V
pre=5
post=3

Y
pre=6

post=4

pre=7

post=5

post=7

√
ISTYPE(Y,U) U.pre≤Y.pre U.post≥Y.post
ISTYPE(Z,S) S.pre≤Z.pre S.post 6≥Z.post√
ISTYPE(Z,T) T.pre≤Z.pre T.post≥Z.post

Run-time Checks – Alg. II (d)

Consider U:
1 U’s pre-number is ≤ all it’s children’s pre numbers.
2 U’s post-number is ≥ all it’s children’s post numbers.

[U.pre,U.post] “covers” (in the sense that U.pre ≤ pre

and U.post ≥ post) the [pre,post] of all it’s children.

S is not a subtype of U since [U.pre,U.post] does not cover
[S.pre,S.post] (S.post ≤ U.post but S.pre 6≥ U.pre).

Z

pre=1 T

Upre=4 post=6S post=2pre=2

X
pre=3

post=1

V
pre=5
post=3

Y
pre=6

post=4

pre=7

post=5

post=7

OO Languages

Inlining Methods

Consider a method invocation m.P(). The actual procedure
called will depend on the run-time type of m.

If more than one method can be invoked at a particular call
site, we have to inline all possible methods. The appropriate
code is selected code by branching on the type of m.

To improve on method inlining we would like to find out when
a call m.P() can call exactly one method.

Inlining Methods. . .

T

m.type=class1

m.type=class2

code for

class2::P

code for

class1::P

call m.P()
T F

F

Inline⇒

Inlining Methods — Example

TYPE T = CLASS [f : T][

METHOD M (); BEGIN END M;

];

TYPE S = CLASS EXTENDS T [

][

METHOD N (); BEGIN END N;

METHOD M (); BEGIN END M;

];

VAR x : T; y : S;

BEGIN

x.M();

y.M();

END;

Type Hierarchy Analysis

For each type T and method M in T , find the set ST ,M of
method overrides of M in the inheritance hierarchy tree
rooted in T .

If x is of type T , ST ,M contains the methods that can be
called by x .M().

We can improve on type hierarchy analysis by using a variant
of the Reaching Definitions data flow analysis.

Type Hierarchy Analysis. . .

TYPE T = CLASS [][

METHOD M (); BEGIN END M;];

TYPE S = CLASS EXTENDS T [][

METHOD N (); BEGIN END N;

METHOD M (); BEGIN END M;];

VAR x : T; y : S;

BEGIN

x.M(); ⇐ ST ,M = {T .M,S .M}
y.M(); ⇐ SS,M = {S .M}

END;

Summary

Readings and References

Read Scott: 529–551,554–561,564–573

The time for a type test is proportional to the depth of the
inheritance hierarchy. Many algorithms do type tests in
constant time:

1 Norman Cohen, “Type-Extension Type Tests can be Performed
in Constant Time.”

2 Paul F.Dietz, “Maintaining Order in a Linked List”.

Confused Student Email

What happens when both a class and its subclass have

an instance variable with the same name?

The subclass gets both variables. You can get at both of
them, directly or by casting. Here’s an example in Java:

class C1 {int a;}

class C2 extends C1 {double a;}

class C {

static public void main(String[] arg) {

C1 x = new C1(); C2 y = new C2();

x.a = 5; y.a = 5.5;

((C1)y).a = 5;

}

}

