
CSc 553

Principles of Compilation

18 : Exceptions

Department of Computer Science
University of Arizona

collberg@gmail.com

Copyright c© 2011 Christian Collberg

Exception Handling I

What should a program do if it tries to pop an element off an
empty stack, or divides by 0, or indexes outside an array, or
produces an arithmetic error, such as overflow?

In C, many procedures will return a status code. In most
cases programmers will “forget” to check this status flag.

Modern languages have built-in exception handling
mechanisms. When an exception is raised (or thrown) it must
be handled or the program will terminate.

Exceptions can be raised implicitly by the run-time system
(overflow, array bounds errors, etc), or explicitly by the
programmer.

Exception Handling II

When an exception is raised, the run-time system has to look
for the corresponding handler, the piece of code that should
be executed for the particular exception.

The right handler cannot be determined statically (at
compile-time). Rather, we have to do a dynamic (run-time)
lookup when the exception is raised.

In most languages, you start looking in the current block (or
procedure). If it contains no appropriate handler, you return
from the current routine and re-raise the exception in the
caller. This continues until a handler is found or until we get
to the main program (in which case the program terminates
with an error).

Exception Handling III

What happens after an exception handler has been found and
executed?

resumption model Go back to where the exception was raised
and re-execute the statement (PL/I).

termination model Return from the procedure (or unit)
containing the handler (Ada).



Exceptions in Modula-3 I

Exceptions are declared like this:

INTERFACE M;

EXCEPTION Error(TEXT);

PROCEDURE P () RAISES {Error};
END M;

Exceptions can take parameters. In this case, the parameter
to Error is a string. Presumably, the programmer will return
the kind of error in this string.

The declaration of P states that it can only raise one
exception, Error.

If there is no RAISES clause, the procedure is expected to
raise no exceptions.

Exceptions in Modula-3 II

S1 and S2 can raise exceptions implicitly, or the programmer
can raise an exception explicitly using RAISE.

When the Error-exception is raised, the EXCEPT-block is
searched and the code for the Error exception is executed.

PROCEDURE P () RAISES {Error};
BEGIN

TRY

S1; RAISE Error("Help!"); S2;

EXCEPT

Error (V) => Write(V); |

Problem (V) => Write("No Probs!"); |

ELSE Write("Unhandled Exception!");

END;

END P;

Exceptions in Modula-3 III

An unhandled exception is re-raised in the next dynamically
enclosing TRY-block. If no matching handler is found the
program is terminated.

MODULE M;

BEGIN

TRY

TRY S1; EXCEPT

Problem (V)=>Write(V);

END;

EXCEPT

Error (V) => Write(V); |

ELSE Write("Unhandled Exception!");

END;

END M;

Exceptions in Modula-3 IV

An unhandled exception is re-raised in the calling procedure.
Exception handlers can explicitly re-raise an exception, or raise
another exception.

MODULE M;

PROCEDURE P ();

BEGIN

TRY S1; EXCEPT

Problem (V)=>RAISE Error("OK")

END;

END P;

BEGIN

TRY P(); EXCEPT

Error (V) => Write(V); |

Problem (V) => Write(V);

END;

END M;



Implementation

We want 0-overhead exception handling. This means that –
unless an exception is raised – there should be no cost
associated with the exception handling mechanism.

We allow raising and handling an exception to be quite slow.

When an exception is raised we need to be able to
1 in the current procedure find the exception handler (if any)

that encloses the statement that raised the exception, and
2 rewind the stack (pop activation records) until a procedure

with an exception handler is found.

The Range Table

We build a RangeTable at compile-time. It has one entry for
each procedure and for each TRY-block. Each entry holds
four addresses: pc high, pc low, handler and cleanup.
[pc low· · · pc high] is the range of addresses for which
handler is the exception handler.

call QTRY

EXCEPT

END

PROC P()

Q()

E1 => ...

END P;

P();
PROGRAM M()

END M

M:
call P

H3:
<default
handler>

Object CodeSource Code Stack

R
a
n
g
e

T
a
b
l
e

M

M_end

H3

/

E1

E2

H2
P_C

Return
Addr

Dynamic

Return
Addr

Dynamic
M

P

(1) (2)

cleanup:

handler:

pc_low:

pc_high:

Link

Link

P:

E2:

E1:

P_C: <cleanup>

H2: <handler 2>

Unwinding the Stack I

Let procedure S raise exception E at code address V. We
search the range table to find an entry which covers V, i.e. for
which pc low<=V<=pc high.

Entry (6) covers all of procedure S (for S to S end), and
hence V. There’s no exception handler for this range. We just
execute S’s cleanup code, S C.

S C will restore saved registers, etc, and deallocate the
activation record.

V: RAISE E1
END R;

PROC S()

R
a
n
g
e

T
a
b
l
e

E3

E4

H1
R_C

S

S_end

/
S_Ccleanup:

handler:

pc_low:

pc_high:

(5) (6)

Object CodeSource Code

S_C: <cleanup>

S: 

Stack

Return
Addr

Dynamic
Link

S
RAISE E1



Unwinding the Stack II

Since S didn’t have a handler, we must unwind the stack until
one is found.

S’s return address is K, which is covered by entry (5) in the
range table. Entry (5) has a handler defined (at address H1).
Run it!

V: RAISE E1

EXCEPT
E2 => ...

END

PROC R()
TRY
S()

Stack

Return
Addr

Dynamic

Return
Addr

Dynamic

Link

Link

R

S

R:
E3:

E4:

R_C: <cleanup>
H1: <handler 1>

call S

E3

E4

H1
R_C

S

S_end

/
S_C

(5) (6)

R
a
n
g
e

T
a
b
l
e

RAISE E1
END R;

PROC S()

Object CodeSource Code

S_C: <cleanup>

S: 

K

cleanup:

handler:

pc_low:

pc_high:

END R;

The Exception Handler

The exception handler itself can be translated as a sequential
search.

If the TRY-EXCEPT-block has no ELSE part, the default
action will be to re-raise the exception.

TRY

S1;

RAISE e;

S2;

EXCEPT

E1 => H1 |

E2 => H2 |

END;

⇒

S1;

RAISE e;

S2;

IF e = E1 THEN

H1

ELSIF e = E2 THEN

H2

ELSE

RAISE e

ENDIF;

The Algorithm

LOOP

D := The first procedure descriptor (Range Table

entry) such that D.pc low <= PC <= D.pc high;

IF D.handler = the default handler THEN

abort and coredump

ELSIF D.handler 6= NIL THEN

GOTO D.handler;

ELSE

Execute the cleanup routine D.cleanup;

PC := Return address stored in the current frame;

SP := SP of previous frame;

FP := FP of previous frame;

END;

END;

Example I (a)

Explanation of the source code:

Consider the example on the next slide.

The main program calls procedure P(). There is a <default

handler> defined for the program at address H3.

Procedure P() calls Q(). Exception X1 is caught by the
handler at address H2.

Q() calls R().

R() calls S(). Exception X2 is caught by the handler at
address H1.

S() throws exception X1 at address A1.



call Q

M

P

Q

R

S

PROC Q()
R();

END Q

PROC R()
TRY
S()

END R;

EXCEPT

END
X2 => ...

END R;

PROC S()
RAISE X1

A5:

M:
call P

H3:
<default
handler>

S_C: <cleanup>

S: 
A1:throw X1

A2:
call S

R:
E3:

E4:

R_C: <cleanup>
H1: <handler 1>

A3:
call R

Q:

Q_C: <cleanup>

(1) (2) (3) (4) (5) (6)
R
a
n
g
e

T
a
b
l
e

M

M_end

H3

/cleanup:

pc_high:

handler:

pc_low:

A4:

Return
Addr

Dynamic

Return
Addr

Dynamic

Return
Addr

Return
Addr

Dynamic

Return
Addr

Dynamic

Dynamic

Link

Link

Link

Link

Link

StackSource Code Object Code

E1

E2

H2
P_C

P_end

P

/
P_C

Q

Q_end

/
Q_C

E3

E4

H1
R_C

S

S_end

/
S_C

P();
PROGRAM M()

END M

TRY

EXCEPT

END

PROC P()

Q()

END P;

X1 => ...

P:

E2:

E1:

P_C: <cleanup>

H2: <handler 2>

Example I (b)

Explanation of run-time actions:

A1∈[S,S end], in Range Table entry (6). (6) has no
handler, so we execute its cleanup routine (S C) and update
PC to the return address, A2.

Since A2∈[E3,E4] in Range Table entry (5), and
(5).handler==H1 6=NIL, we GOTO H1. This handler doesn’t
handle exception X1, so it will simply re-raise X1.

Q() has no handler, so we execute its cleanup routine (Q C)
and propagate the exception to P(). I.e. We update PC to the
return address stored in Q’s frame, A4.

Since A4∈[E1,E2] in Range Table entry (2), and
(2).handler=H2, we GOTO H2. This handler catches X1. ⇒
Done.

Readings and References

Further reading:
1 Drew, Gough, Lederman, Implementing Zero Overhead

Exception Handling, http://www.dstc.qut.edu.au/~gough/zeroex.ps .
2 Drew, Gough, Exception handling: Expecting the Unexpected,

Computer Language, Vol 32, No 8, pp. 69–87, 1994.

Summary

The algorithm we’ve shown has no overhead (not even one
instruction), unless an exception is thrown.

The major problem that we need to solve is finding the
procedure descriptor for a particular stack frame.

An alternative implementation would be to store a pointer in
each frame to the appropriate descriptor. The extra space is
negligible, but it would cost 1-2 extra instructions per
procedure call.


