
CSc 553

Principles of Compilation

20 : Code Generation III

Department of Computer Science
University of Arizona

collberg@gmail.com

Copyright c© 2011 Christian Collberg

Trivial Code Generation

Generating Code From Trees

To generate code from expression trees, traverse the tree and
emit machine code instructions.

For leaves (which represent operands), generate load
instructions. For interior nodes, generate arithmetic
instructions.

Assume an infinite number of registers ⇒ easy algorithm!

Each tree node N has an attribute ’R’, the register into
which the subtree rooted at N will be computed.

SUB R3,R2

e

−

−

a b

+

+

c

MOV c,R3

d

MOV d,R4

MOV e,R2MOV a,R0 MOV b,R1

R=R2

R=R2
R=R0 R=R1

R=R4R=R3

ADD R1,R0

R=R0

SUB R2,R0

R=R0

ADD R4,R4 3

R=R3

Generating Code From Labeled
Trees



Optimal Ordering For Trees I

We can generate ’optimal’ code from a tree. ‘Optimal’ in the
sense of ’smallest number of instructions generated’.

The idea is to reorder the computations to minimize the need
for register spilling.

a b e

c d

t3

t2

t4

t1

First Order Second Order
t1 := a + b

t2 := c + d

t3 := e - t2

t4 := t1 - t3

t2 := c + d

t3 := e - t2

t1 := a + b

t4 := t1 - t3

Optimal Ordering For Trees II

Assume two registers available. The first ordering evaluates
the left subtree first, and has to spill R0 to have enough
registers available for the right subtree.

First Order Second Order First Order Second Order
t1 :=a+b

t2 :=c+d

t3 :=e-t2

t4 :=t1-t3

t2 :=c+d

t3 :=e-t2

t1 :=a+b

t4 :=t1-t3

MOV a, R0

ADD b, R0

MOV c, R1

ADD d, R1

MOV R0, t1

MOV e, R0

SUB R1, R0

MOV t1, R1

SUB R0, R1

MOV R1, t4

MOV c, R0

ADD d, R0

MOV e, R1

SUB R0, R1

MOV a, R0

ADD b, R0

SUB R0, R1

MOV R0, t4

The Tree Labeling Phase I

The algorithm has two parts. First we label each sub-tree with
the minimum number of registers needed to evaluate the
subtree without any register spilling.

The Labeling Algorithm:

n is a left leaf ⇒ label(n) := 1;

n is a right leaf ⇒ label(n) := 0;

n’s children have labels lL & lR :
lL 6= lR ⇒ label(n) := max(lL, lR)
lL = lR ⇒ label(n) := lL + 1

a b e

c d0

t2

t4

t1 t3

1

1

1

1

0

2

2

1

The Tree Labeling Phase II

RL L RL < R L > R

n max(L,R) n max(L,R)

n1
n2 n1 n2

If we have a node n with subtrees n1 and n2 with
L=label(n1) & R=label(n2) & L<R then we can first
evaluate n2 into a register Reg using R registers. Then we use
R-1 registers to evaluate n1.

Similarly, if L>R then we can first evaluate n1 into a register
Reg and use the remaining R-1 registers for n2.

However, if L=R
RL L = R

n

n1
n2

L+1

we’ll need one extra
register to hold the result of n1 while we evaluate n2.



The Generation Phase I

gencode(n) generates machine code for a subtree n of a
labeled tree T .

MOV M, R Load variable M into register R.
MOV R, M Store register R into variable M.
OP M, R Compute R := R OP M. OP ∈ ADD, SUB, MUL, DIV.
OP R2, R1 Compute R1 := R1 OP R2.

A stack rstack initially contains all available registers.
gencode(n) generates code for subtree n using the registers
on rstack, computing its value into the register on the top of
the stack.
A stack tstack of temporary memory locations is used for
register spilling.

R1

R0
Top

rstack
T1

T0

..

.

Top

tstack

The Generation Phase II

Case 0 A leaf n is the leftmost child of its parent.

Case 1 A leaf n2 is the rightmost child of its parent.

Case 2 A right subtree n2 requires more registers than the
left subtree n1.

Case 3 A left subtree n1 requires more registers than the
right subtree n2.

Case 4 Both subtrees require registers to be spilt.

L

L RL
L > R

R

L R
L < R

name

n

n1
n2

Case 1

L>r
R>r

n

n1
n2

Case 4

R < r

n

n1
n2

Case 3

n

n1
n2

Case 2

L < r
n1

Case 0

name

The Generation Phase III

Case 0

n1

Case 0

name

1 Generate a load instruction to load the variable into a register:
MOV name, top(rstack) .

Case 1

L

OP

name

n1
n2

Case 1

1 Generate code for n1 into register top(rstack), i.e. call
gencode(n1).

2 Generate OP name, top(rstack) .

The Generation Phase IV

Case 2

L < R
L R

OP

n1
n2

Case 2

L < r

n1 can be evaluated without spilling, but n2 requires more
registers than n1.

We swap the two top registers on rstack, evaluate n2 into
top(rstack), remove the top register, then evaluate n1 into
top(rstack). Restore the stack.

1 swap(rstack), gencode(n2)

2 R := pop(rstack)

3 gencode(n1)

4 Generate OP R, top(rstack)

5 push(rstack, R), swap(rstack)



The Generation Phase V

Case 3

L
L > R

R

Case 3

R < r

OP

n1
n2

n2 can be evaluated without spilling, but n1 requires more
registers than n1.

We evaluate n1 into top(rstack), remove the top register,
then evaluate n2 into top(rstack).

1 gencode(n1)

2 R := pop(rstack)

3 gencode(n1)

4 Generate OP top(rstack), R

5 push(rstack, R)

The Generation Phase VI

Case 4

L R
R ≥ r

OP

n1
n2

Case 4

L ≥ r

Neither n1 nor n2 can be evaluated without spilling,

We evaluate n2 into a temporary memory location
top(tstack), and then we evaluate n1 into top(rstack).

1 gencode(n2)

2 T := pop(tstack)

3 Generate MOV top(rstack), T

4 gencode(n1)

5 push(tstack, T)

6 Generate OP T, top(rstack)

Examples

Example I (A)

a e

c d

b

t32

1

1

t21

1 0

t11

0

t42

gencode(t4) [R1,R0] case2

gencode(t3) [R0,R1] case3

gencode(e) [R0,R1] case0

MOV e, R1

gencode(t2) [R0] case1

gencode(c) [R0] case0

MOV c, R0

SUB R0, R1

gencode(t1) [R0] case1

gencode(a) [R0] case0

MOV a, R0



Label:

Code:

−2

Label:

Code:

+1Label:

Code:

e1

Label:

Code:

+1

Label:

Code:

b0Label:

Code:

a1

(5) MOV a, R0

Label: Label:

Code:

d0
Code:

c1

Label:

Code:

−2

Two registers available

Example I (B)

R0

R1
t3

(4) SUB R0, R1

R0

t2

(3) ADD d,R0(1) MOV E, R1

R0

t1

(6) ADD b, R0

Case 1

(6)

Case 0

(2) MOV c, R0

Case 0

R1

R0

Case 2

t4

(7) SUB R1,R0
(1)

(3)

(a + b) − (e − (c + d))

Case 3

Case 1Case 0

(5)

(2)

(4)

Label:

Label:

Label:

Label:

Label:

Code:

d0

Label:

Code:

e1Label:

Code:

b0

Label:

Label:

Code:

a1

(7) MOV a, R0

Code:

+1

Code:

c1

Code:

+1

Code:

−2

One register available

Code:

−2

(1)

(3) MOV R0,T0
(5) SUB T0,R0

R0

R0

R0

(4) MOV E, R0

R0

Case 0

t1

(8) ADD b, R0

(6) (4) (2)

(3)

(a + b) − (e − (c + d))

t2

(2) ADD d,R0

t3

(1) MOV c, R0

Example II

Case 4

Case 1

Case 0

Case 1

t4

(6) MOV R0,T0
(9) SUB T0,R0

Case 4

(5)

Summary

Readings and References

This lecture is taken from the Dragon Book:

Code Generation From Trees: 557–559, 561–566.
Local Optimization: 530–532, 600–602.



Summary I

Why do we swap registers in Case 2?

L R
L < R

Case 2

Generate code for
this one second,
into register R0

Generate code for
this one first,
into register R1

OP

-

SUB R1, R0

R0

R1

R0

R1

R0n1
n2

L < r

This node expects its
right son to generate
code that evaluates
into register R0.

R0 := R1 - R0

Code:

bLabel:

Code:

cLabel:

Label:

Code:

+

Label:

Code:

/

Label:

Code:

+

Code:

eLabel:

Code:

fLabel:

Code:

dLabel:Label:

Code:

/Label:

Code:

a

Code:

Label: *

(a + (b/c))/(d ∗ (e + f ))

Two registers
(R0,R1) are
available.

Homework I

Code:

bLabel:

Code:

cLabel:

Label:

Code:

+

Label:

Code:

/

Label:

Code:

+

Code:

eLabel:

Code:

fLabel:

Code:

dLabel:Label:

Code:

/Label:

Code:

a

Code:

Label: *

(a + (b/c))/(d ∗ (e + f ))

One register
(R0) is
available.

Homework II

Label:

Code:

* Label:

Code:

+Label:

Code:

+

Label:

Code:

−Label:

Code:

*

Label:

Label:

Code:

a1

MOV a, R0

Label:

Code:

eLabel:

Code:

c Label:

Code:

d Label: f
Code:

Label:

Code:

gLabel:

Code:

b

The machine has two registers

locations T0,T1,...
number of temporary memory
R0 and R1, and an infinite Code:

/
Exam Question 07.330/96


