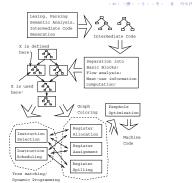
CSc 553

Principles of Compilation

21: Code Generation — Dynamic Programming

Department of Computer Science University of Arizona

Copyright (© 2011 Christian Collberg



Introduction

Instruction Selection

WHILE i < 10 DO

- Starting with intermediate code in tree form, we generate the cheapest instruction sequence for each tree, using no more than r registers (R₀···R_{r-1}).
- We will show an algorithm that integrates instruction selection and register allocation and generates optimal code for a large class of architectures.
 Intermediate Code Example

$\begin{array}{c} X := X + 5*Y; \\ i := i + 2; \\ END \\ \\ & Li \\ & 110 \\ & L2 \end{array} \stackrel{\text{i.s. off-coto}}{\underset{X}{\longleftarrow}} \stackrel{\text{i.s. off-lamel}}{\underset{X}{\longleftarrow}} \stackrel{\text{oto-lamel}}{\underset{X}{\longleftarrow}} \stackrel{\text{oto-lamel}}{\underset{X}{\longleftarrow}} \\ \end{array}$

Machine Model

Naive Algorithm

Machine Model

We will assume the existence of these types of instructions:

 $R_i := E$ E is any expression containing operators, registers, and memory locations. R_i must be one of the registers of E (if any). I.e., we assume 2-address instructions:

2-address
$$R_1 := R_1 + R_2$$
.
3-address $R_1 := R_2 + R_3$.

 $R_i := M$ A load instruction.

 $M := R_i$ A store instruction.

 $R_i := R_j$ A register copy instruction.

 $R_i := R_i + \text{ind } R_j$ A register indirect instruction.

All instructions have equal cost.

Optimal Code Generation

- To generate optimal code for an expression E

 E

 1 op E

 2 we generate optimal code for E

 1, optimal code for E

 2, and then code for the operator.
- We have to consider every instruction that can evaluate op.
- If E₁ and E₂ can be computed in an arbitrary order, we have to consider both of them.
- We may not have enough registers available, so some temporary results may have to be stored in memory.

- Compute the optimal cost for each node in the tree, assuming there are 1,2,..., r registers available. Also compute the optimal cost of computing the result into memory.
 - The cost of a node n includes the cost of the code for n's sub-trees and the cost of the operator at n.
- ② Store the result for each node n in a **cost vector** $C_n[i]$:
 - C[1] = Cost of computing n into a register, with 1 (one) register available.
 - C[2] = As above, but with 2 available registers.
 - C[3] = ···
 - C[0] = Cost of computing n into memory.

- Traverse the tree and (using the cost vectors) decide which subtrees have to be computed into memory.

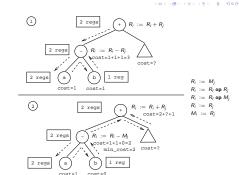
 Traverse the tree and (a size with the cost vectors) reports.
- Traverse the tree and (again using the cost vectors) generate the final code:
 - First code for subtrees that have to be computed into memory.
 - Then code for other subtrees.
 - Then code for the root.
- As we shall see, naïvely computing the costs recursively will result in us recomputing the same cost several times.

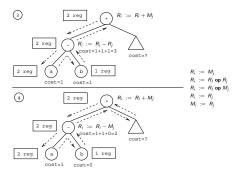
(Naïvely) Computing the Costs

FOR EACH instruction I that matches op DO

• If the instruction requires the left

- If the instruction requires the left operand to be in a register, then (recursively) compute the optimal cost C_L[i] of evaluating the left subtree with i registers available.
- If the instruction requires the right operand to be in a register, compute the cost C_R[i-1] of eval. the right subtree with i-1 regs.
- Compute the cost of evaluating the





Dynamic Programming

Dynamic Programming I

- Some recursive algorithms are very inefficient, because they solve the same subproblem several times. That, for example, is the case with the Fibonacci function in the next slide.
- A rather obvious solution is to store the results in a table as they are computed, and then check the table before solving a subproblem to make sure that it's value hasn't already been computed. This is known as memoization.
- Even more efficient is to try to find a linear (topological) order in which the subproblems can be solved, and then solve them in that order, knowing that when we need the result of a specific subproblem, it has already been computed. This is dynamic programming.

Dynamic Programming II

Recursive Fibonacci

function Fib (n)if $n \le 1$ then return 1 else return Fib(n-1) + Fib(n-2)

Memoization Fibonacci

```
for i:=1 to n do A[i]:=-1;
function Fib (n)
if A[n]=-1 then
if n\le 1 then A[n]:=1
else A[n]:=\mathrm{Fib}(n-1)+\mathrm{Fib}(n-2)
return A[n]
```

function Fib (n)

Dynamic Programming Fibonacci

A[0] := A[1] := 1;for i := 2 to n do A[i] := A[i-1] + A[i-2]

The Dynamic Programming Algorithm

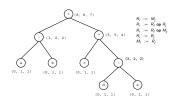
Computing Costs

- There is a linear-time, dynamic programming, bottom-up algorithm for computing the costs.
- Compute C[i] at node n Consider each instruction R_k := E where E matches the subtree, and choose the **minimum** C[i], where C[i]=The sum
 - C[i] of n's left subtree
 - \bigcirc C[i-1] of n's right subtree the cost of the instruction at n

$$R_i := R_i \text{ op } R_j \mid R_i := M_j \mid M_i := R_j$$

 $R_i := R_i \text{ op } M_j \mid R_i := R_j \mid$

Computing Costs – Example I (a)



Computing Costs – Example I (b)

$\begin{array}{c} E \\ E_1 \\ \hline \bigcirc \\ C_2 \\ C_3 \\ C_4 \\ C_5 \\ C_6 \\ C_6 \\ C_7 \\ C_8 \\ C_8 \\ C_8 \\ C_9 \\$

- **1** E₁ into R_0 (2 regs avail); E_2 into R_1 (1 reg avail); Use $R_0 := R_0 R_1$ at E; $Cost = E_1[2] + E_2[1] + 1 = 1 + 1 + 1 = 3$
- ② E_2 into Memory (2 regs avail); E_1 into R_0 (2 regs avail); Use $R_0 := R_0 M$ at E; $Cost = E_2[0] + E_1[2] + 1 = 0 + 1 + 1 = 2$
- C[2] = min(3,2) = 2.

Computing Costs – Example I (c)

$$E_1$$
 E_2
 E_2
 E_3
 E_4
 E_2
 E_3
 E_4
 E_5
 E_5
 E_7
 E_8
 E_9
 E_9

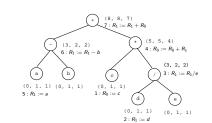
$$R_i := R_i \text{ op } R_j \ | R_i := M_j \ | M_i := R_j \ | R_i := R_j \ | R_j :=$$

- **3** E_2 into Memory (1 reg available); E_1 into R_0 (1 reg available); Use $R_0:=R_0-M$ at E; $Cost=E_2[0]+E_1[1]+1=0+1+1=2$
- Only one instruction to choose from.
- C[1] = 2.
- The min cost of computing E into memory is the min cost of computing E into a register (= min(2,2)) plus 1 (=3).

Computing Costs – Example I (d)

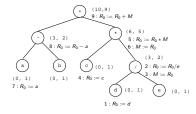
- **1** E₁ into R_0 (2 regs avail); E_2 into R_1 (1 reg avail); Use $R_0 := R_0 + R_1$ at E; Cost= $E_1[2] + E_2[1] + 1 = 2 + 5 + 1 = 8$
- **②** E_2 into R_1 (2 regs); E_1 into R_0 (1 reg); Use $R_0 := R_0 + R_1$ at E; $Cost = E_2[2] + E_1[1] + 1 = 4 + 2 + 1 = 7$
- **3** E_2 into Memory (2 regs); E_1 into R_0 (2 regs); Use $R_0 := R_0 + M$ at E; $Cost = E_2[0] + E_1[2] + 1 = 5 + 2 + 1 = 8$
- $C[2] = \min(8,7,8) = 7.$

${\sf Generating\ Code-Example\ I\ (e)}$



4 D > 4 B > 4 B > 4 B > 3 B + 404 B

Dynamic Programming - Example II



Readings and References

- This lecture is taken from the Dragon book: 567-580.
- Read "Emmelmann, Schröer, Landwehr: BEG A generator for Efficient Back Ends", PLDI '89.
- Additional material: "Aho, Ganapathi, Tjiang: Code Generation Using Tree Matching and Dynamic Programming, TOPLAS, Vol 11, No. 4, Oct. 1989, pp 491-516.
- For information on Dynamic Programming: see "Algorithms", by Cormen, Leiserson, Rivest, p. 310.

Summary

Summary

 Use the dynamic programming algorithm to generate optimal code for the assignment

$$g := a * (b + c) + d * (e - f).$$

· Assume that two registers (RO, R1) are available.

Machine Model

$$R_i := M_j$$

$$R_i := R_i \text{ op } R_i$$

$$R_i := R_i \text{ op } M_j$$

$$R_i := R_j$$

$$M_i := R_j$$

 Use the dynamic programming algorithm to generate code for the expression tree below using (a) 1 and (b) 2 registers. For each node show the cost vector and the instruction(s) generated.

