
CSc 553

Principles of Compilation

27 : Optimization II

Department of Computer Science
University of Arizona

collberg@gmail.com

Copyright c© 2011 Christian Collberg

Introduction

Global Optimization I

Central to all the global optimizations are that they make use
of global data-flow analysis. We are going to start out by
discussing the algorithms for performing global optimizations,
assuming that the information computed during data-flow
analysis is available. Later on we will describe how this
information is actually computed.

Global data-flow analysis answers questions like: “will a value
v computed at a point p in a procedure be available at some
other point q?”

In other words, global data-flow analysis tracks values and
computations as they cross basic block boundaries.

Global Optimization II

In general we can’t know how control will flow in a
flow-graph, so our data-flow analysis has to be conservative:
it has to assume that any possible control flow may be an
actual control flow. This means that

1 any optimization that we perform will not change the
semantics of the program, and

2 sometimes we won’t be able to perform an optimization that
would be perfectly legal, just because our data-flow
information is imprecise (too conservative).

Global Optimization III

In order to perform global optimizations we need access to
global data flow information, i.e. we need to track values as
they cross basic block boundaries.

p21

B3

d5: j := j − 1

B2

d4: i := i + 1

B1

d1: i := m − 1

d2: j := n

d3: a := u1

B5

d6: a := u2

B4

p1

p2

p3

p4

p5

p6

p7

p8

B6

p30
p20

Loop Invariants

Loop Invariants I

Let C be a computation in a loop body. C is invariant if it
computes the same value during all iterations. C can
sometimes be moved out of the loop.

K := 1; I := 2;

REPEAT

A := K + 1; I := I + A;

UNTIL I <= 10;

K := K + A;

Step 1: Build Flowgraph

B3

d5 : if I>10 goto B2

d4 : I := I + A;

d1 : K := 1;

d2 : I := 2;

d6 : K := K + A;

B1

B2d3 : A := K + 1;

Loop Invariants II

To detect (in the previous slide) that A := K + 1 is
invariant, we must first detect that K is not changed within
the loop.

We really want to know is where the value that K has in the
loop could have been computed. If K’s value could only have
been computed outside the loop (as is, in fact, the case) then
we can conclude that K is not changed within the loop, and
hence A := K + 1 is invariant.

Information on where the value of a particular variable (at a
particular point in the program) could have been computed is
often stored in use-definition-chains, or ud-chains.

Loop Invariants III

If, at a point p in the program, we use a variable i, and the
point q is on i’s ud-chain at point p, then the value of i at p
could have been computed at q.

Note that we have no way of knowing exactly where i’s value
has been computed (this depends on the actual control-flow
at run-time and is in general non-computable [equiv the
halting problem]), so our ud-chains will be overly pessimistic:
there may be points on i’s ud-chain that are never reached at
run-time (and hence i could never receive a value there), but
we can’t be sure of this and therefore we must include those
points as well.

Reaching Definitions I

To detect loop invariant computations we must first compute
reaching definitions, or use-definition-chains.
p: ud[i], the ud-chain for a variable i at a point p, lists
the points in the program where i’s value could have been
computed.

Example:

d1: i := m - 1;

d2: j := n;

REPEAT

d3: i := i + 1; ud[i]=〈d1, d3, d6〉

d4: j := j - 1; ud[j]=〈d2, d4〉

IF · · · THEN d5: a := · · · ;
ELSE d6: i := · · · ;
END;

UNTIL · · ·

Reaching Definitions II

Ud-chains are built from the solution to a data-flow problem
known as reaching definitions. For example, in the previous
slide

1 the definition of i at point d1 reaches point d3, because the
value of i on the right hand side of i := i + 1 could have
been computed at d1.

2 the definition of i at point d3 reaches d3 itself, since if the first
branch of the IF-statement is taken d6 won’t be executed, and
i’s value computed at d3 will still be valid the next time d3 is
reached.

3 if the second branch of the IF-statement is taken, however, i’s
value computed at d6 will reach d3.

Hence, the definitions of i at d1, d3, d6 all reach d3, and are
on i’s ud-chain at d3.

Data-Flow Problems I

In order to build ud-chains, we have to solve the data-flow
problem reaching definitions.

Data-flow problems are problems on sets. These sets can be
sets of points in the control flow graph, sets of expressions,
sets of variables, etc, depending on the nature of the problem.

In the reaching definitions problem we work on sets of
definitions, or places in the control flow graph where a
particular variable could have received its value.

In general, data-flow problems come in two parts: a local part
which solves the problem within each basic block, and a global
part which combines the local solutions into a global solution.

Data-Flow Problems II

The local part of the data-flow problem consists of (for each
basic block B), computing two sets, often called gen[B] and
kill[B].

For the reaching definitions problem gen[B] is the set of
definitions that occur within B and that reach the end of B.
I.e., if there is more than one assignment to a in B, then only
the last one reaches the end of B.

Similarly, kill[B] is the set of definitions (anywhere in the
routine) that are killed by definitions in B. I.e., if some
definition d reached the beginning of B and d is in kill[B],
we could be sure that that definition would not reach the end
of B.

Loop Invariants IV

For each basic block we compute gen and kill.

gen[B] is the set of definitions (assignments to variables)
that occur within B. kill[B] is the set of definitions outside
B, killed by definitions within B.

Step 2: Compute gen & kill:

gen[B2] = {d3, d4}

d5 : if I>10 goto B2

d4 : I := I + A;

d1 : K := 1;

d2 : I := 2;

B1

kill[B1] = {d4, d6}

gen[B1] = {d1, d2}

d6 : K := K + A;

B3

kill[B3] = {d1}

gen[B3] = {d6}

B2

kill[B2] = {d2}

d3 : A := K + 1;

Data-Flow Problems III

The global part of a data-flow problem computes sets called
in[B] and out[B].

For the reaching definitions problem, in[B] is the set of
definitions that reach the beginning of B, i.e. the set of points
in the control flow graph that computes values that may still
be valid when we (at run time) reach the beginning of B.

Similarly, out[B] is the set of definitions that may reach the
end of B, i.e. the set of points in the flow graph that
computes values that may still be valid when control reaches
the end of B.

Consider the example in the previous slide:
1 Since no definitions are going into B1, out[B1] is simply the

set of defs generated within B1, i.e. gen[B1].

Loop Invariants V (a)

Next we must compute in and out.

in[B] is the set of definitions that reach the beginning of B.

out[B] the set that reach B’s end.

Step 2: Compute in & out for B1:

d2 : I := 2;
B1

d1 : K := 1; kill[B1] = {d4, d6}

gen[B1] = {d1, d2}

in[B1] = {}

out[B1]=gen[B1]∪(in[B1]-kill[B1])

={d1, d2} ∪ ({} − {d4, d6}

={d1, d2}

Out[B2]= definitions active at the end of B2, i.e. generated
within the B2, plus those incoming definitions that
weren’t overridden by definitions within B2.

in[B2]= definitions that compute values that could be active
at the entrance of B2. These could have been
computed in any of B2’s predecessors.

Step 2: Compute in & out for B2:

B2

d4 : I := I + A;

d5 : if I>10 goto B2

d2 : I := 2;
B1

d1 : K := 1;

d6 : K := K + A;B3

kill[B2] = {d2}

gen[B2] = {d3, d4}

out[B2]=gen[B2]∪

(in[B2]-kill[B2])

={d3, d4}∪

({d1, d2, d3, d4} − {d2})

={d1, d3, d4}

={d1, d2} ∪ {d1, d3, d4}
={d1, d2, d3, d4}

out[B1]={d1, d2}

in[B2]=out[B1]∪ out[B2]d3 : A := K + 1;

d1 ∈ in[B3] since K is not assigned a value on any path from
B1 to B3.

d1 6∈ out[B3] since K is assigned a new value in B3.

Step 2: Compute in & out for B3:

out[B1]={d1, d2}

d4 : I := I + A;

d5 : if I>10 goto B2

kill[B3] = {d1}

gen[B3] = {d6}

out[B3]=gen[B3]∪

(in[B3]-kill[B3])

={d6} ∪ ({d1, d3, d4}

−{d1})

={d3, d4, d6}

B3

d6 : K := K + A;

d2 : I := 2;
B1

d1 : K := 1;

B2

out[B2]={d1, d3, d4}

in[B3]=out[B2]={d1, d3, d4}

d3 : A := K + 1;

Loop Invariants VI

Reaching definitions information is often stored as ud-chains.

dk ∈ ud[v] at point p, if v’s value at p could have been
computed in dk .

If v is used at point p in block B, then du[v] at p is the list of
definitions of v in in[B]. (Well, almost.)

Step 3: Compute du-chains:

B2

d5 : if I>10 goto B2

d4 : I := I + A;

d6 : K := K + A;

B3
ud[K]=〈d1〉

ud[A]=〈d3〉

in[B3]={d1, d3, d4}

d2 : I := 2;

d1 : K := 1; in[B1] = {}B1

ud[K]=〈d1〉

ud[A]=〈d3〉

ud[I]=〈d2, d4〉

ud[I]=〈d4〉

in[B2]={d1, · · · , d4}

d3 : A := K + 1;

Loop Invariants VII

With du-chains available, we can now mark invariant
computations in loops.

dk is invariant if either all arguments are constants, or have
their reaching definitions outside the loop.

Step 4: Compute Invariant Expr:

B1

d5 : if I>10 goto B2

d4 : I := I + A;

d1 : K := 1;

d2 : I := 2;

ud[K]=〈d1〉

ud[A]=〈d3〉
d6 : K := K + A;

B3

ud[K]=〈d1〉

ud[A]=〈d3〉

ud[I]=〈d2, d4〉

ud[I]=〈d4〉

B2

invariant!

d3 : A := K + 1;

Loop Invariants VIII

Finally we can move invariant computations out of loops,
subject to certain conditions (see the Dragon book, p. 641).

Step 5: Perform Code-Motion:

d4 : I := I + A;

d6 : K := K + A;

B3

d3 : A := K + 1;

d1 : K := 1;

d2 : I := 2;

B1

B2

d5 : if I>10 goto B2

Loop Invariants IX

Algorithm

1 Build a flowgraph for the procedure.

2 Compute ud-chains:
1 Compute reaching definitions:

1 For each block B, compute gen[B] and kill[B].

2 For each block B, compute in[B] and out[B].

2 Use in[B] to build ud-chains.

3 Use ud-chains to detect invariant computations.

4 When possible, perform code motion, by moving invariant
computations out of loops.

Reaching Definitions II

Reaching Def. Example I

Let’s take another look at the computations of ud-chains,
through reaching definitions.

d1: i := m - 1;

d2: j := n;

d3: m := · · · ;
REPEAT

d4: i := i + 1;

d5: j := j - 1;

IF · · · THEN
d6: a := · · · ;

ELSE
d7: i := · · · ;

END;

UNTIL · · ·

Reaching Def. Example II

i := m − 1

j := n

a := ...

i := i + 1

j := j − 1

i :=..a := ...

k={d1, d2, d7}

d2:

d3:

d4:

d5:

d7:d6:

g={d1, d2, d3}

i={}

o={d1, d2, d3}

k={d4, d5, d6, d7}
B1

B2

B3 B4

g={d6}

k={d3}

o={d4 · · · d6}

g={d7}

k={d1, d4}

g={d4, d5}

o={d3 · · · d6}

i={d1 · · · d7}

i={d3 · · · d6}
i={d3 · · · d6}

o={d3, d5, d6, d7}

d1:

Reaching Def. Example III (a)

Block B1

out[B1]={d1, d2, d3}, since d1, d2, d3 reach the end of the
block (once i has been defined, there are no further
assignments to it in the block).

Block B2

in[B2]={d1, · · · , d7}, since we can reach the entrance to B2

either through B2 (when definitions d1, d2, d3 are active),
through B3 (when definitions d4, d5, d6 are active), or through
B4 (when d3, d5, d6, d7 are active). The union of these sets is
{d1, · · · , d7}.

out[B2]={d3, · · · , d6}, since B2 definitely kills {d1, d2, d7}in
B1.

Reaching Def. Example III (b)

Block B3

in[B3]=out[B2]={d3, · · · , d6}, since if some value is
available at the end of B2, then certainly it is available at the
beginning of B3.

out[B3]={d4, · · · , d6} since all the incoming definitions
({d3, · · · , d6}) plus those definitions generated within B3 (d4)
are available at B3’s exit, except those that were killed by B3

(d4).

Data-Flow Equations I

out[B] = gen[B] ∪ (in[B]− kill[B])

in[B] =
⋃

predecessors

P of B

out[P]

Local Equations:

d ∈ gen[B] ⇒ d reaches the end of B.

d ∈ kill[B] ⇒ d does not reach the end of B.

Global Equations:

d ∈ in[B] ⇒ d reaches the beginning of B.

d ∈ out[B] ⇒ d reaches the end of B.

Global Data-Flow (Equations):

out[B] = gen[B] ∪ (in[B]− kill[B])

Global Data-Flow (English):

out[B](the definitions which are available at the end of B)
contains the definitions generated within B

(gen[B]), and the definitions that are available at
the beginning of B (in[B]), except those that
where superseded by definitions in B (kill[B]).

Example:

d6 :i:=· · ·

k[B2]={d2, d6}

k[B3]={d2, d5}

g[B3]={d6}

k[B1]={d5, d6}

g[B1]={d2}

here, but not d2.

d6 is available

B1

B2 B3

B4

d2 :i:=· · ·

d5 :i:=· · ·

g[B2]={d5}

Global Data-Flow (Equations):

in[B] =
⋃

predecessors

P of B

out[P]

Global Data-Flow (English):

in[B](the definitions which are available at the beginning
of B) contains all definitions available at the end of
any basic block from which control can flow into B.

Example:

d6 :i:=· · ·

k[B2]={d2, d6}

k[B3]={d2, d5}

g[B3]={d6}

k[B1]={d5, d6}

g[B1]={d2}

d5, d6 available

here, but not d2.

B1

B2 B3

B4

d5 :i:=· · ·

d2 :i:=· · ·

g[B2]={d5}

B3d6: i:=...d5: i:=...

d2: i:=...

g[B2]={d5}

k[B2]={d2, d6}

k[B3]={d2, d5}

g[B3]={d6}

k[B1]={d5, d6}

g[B1]={d2}
B1

B4

B2

in[B2] = {d2}

in[B3] = {d2}

out[B2] = gen[B2] ∪ (in[B2] − kill[B2])

= {d5} ∪ ({d2} − {d2, d6})

= {d5}

out[B3] = gen[B3] ∪ (in[B3] − kill[B3])

= {d6} ∪ ({d2} − {d2, d5})

= {d6}

in[B4] = out[B2] ∪ out[B3]

= {d5, d6}

Computing UD-Chains

Assume that variable a is used at point p in block B . Assume
that there is no def. of a between the beginning of B and p.

Then the ud-chain of a at p is the definitions of a in in[B].

Example

i := m − 1

j := n

a := ...

i := i + 1

j := j − 1

a := ... i := a

i={d3 · · · d6}

d2:

d3:

d4:

d5:

d6:

B1

B2

B4

i={}

d7:

i={d1 · · · d7}

i={d3 · · · d6}

ud[i]={d1 , d4, d7}

ud[j]={d2 , d5}

ud[a]={d3 , d6}

B3

d1:

Global Common
Sub-Expression Elimination

Global CSE I

Reaching definitions are only one of many possible global data
flow problems. Next we will see how we can perform global
common sub-expression elimination, based on information
computed by a global data-flow analysis problem called
Available Expressions.

In the next slide we see that
1 when control reaches B6, the expression Y+Z will have been

computed, regardless of which IF-statement branch has been
taken,

2 Y+Z is used within B6 and is therefore a common
subexpression.

Can we detect this so that we need not recompute Y+Z in B6

but rather can reuse the value computed in B4 & B5 in B6.

Global CSE II

X := G;

WHILE X < 10 DO

IF X > 1 THEN X := Y + Z; T := 5 - V;

ELSE V := Y + Z;

END; R := Y + Z; S := 7 - V;

END;

CSEsd2: if X >= 10 goto B6

d3: if X>1 goto B4

d6: V := Y + Zd4: X := Y + Z

d5: T := 5 - V

d1 : X:=G

d7 : R := Y + Z

d8: S := 7 - V

goto B2

B1

B2

B3

B4
B5

B6

Available Expressions I (a)

An expression E is available at some point p if (regardless of
the actual execution path from the initial node to p) E ’s value
will have been computed when p is reached.

Local Available Expr:

gen[B]is the set of expressions generated within B (and not
killed by B itself).

- expr in A

q:

r: Y := ...

A is a set of

available expressions

here.

A := A − {Y + Z}

A := A ∪ {Y + Z}

using X

p: X := Y + Z

Available Expressions I (b)

Local Available Expr:

kill[B]is the set of expressions killed within B, i.e. all
expressions Y + Z such that Y or Z is assigned to in
B.

p : X :=· · ·

U = {q, r}

B

kill[B]=exprs in U killed

by B, i.e. {q, r}

r : · · · :=· · · +Xq : · · · :=X+· · ·

U is the universal set of expressions in the procedure.

Available Expressions II

g={Y+Z,5-V}

d3: if X>1 goto B4

d4: X := Y + Z

d5: T := 5 - V

d1 : X:=G

d7 : R := Y + Z

d8: S := 7 - V

goto B2

k={}

g={X>=10}

k={}

g={X>1}

B4
B5

d2: if X >= 10 goto B6B2

B1

B3

d6: V := Y + Z

g={Y+Z}

B6

g={G}

k={X>=10,X>1}

g={Y+Z,7-V}

k={}

k={X>=10,X>1}

k={5-V,7-V}

Available Expressions III

Global Data-Flow (Equations):

out[B] = gen[B] ∪ (in[B]− kill[B])

Global Data-Flow (English):

out[B](the set of expressions available at the end of B)
contains the expressions generated within B

(gen[B]), and the expressions that are available at
the beginning of B (in[B]), except those that
where killed by definitions in B (kill[B]).

Example:

in={X+Y,S+T}

d1: ...:= R+P

d9: S := ...

gen={R+P}

kill={S+T}

out={X+Y,R+P}

Available Expressions IV

Global Data-Flow (Equations):

in[B1] = {}

in[B] =
⋂

predsP of B

out[P]

Global Data-Flow (English):

in[B1]is always empty.

in[B]expressions available at the entrance to B, i.e. any
expression available at the exit of all of B’s
predecessors.

Example:

r : · · · := X + Y

here, but not V*T.
B

p : · · · := X + Y

q : · · · := X + Y

s : · · · := V * T

X+Y is available

Available Expressions V

k={5-V,7-V}

d4: X := Y + Z

d5: T := 5 - V

d7 : R := Y + Z

d8: S := 7 - V

goto B2

B4
B5

d6: V := Y + Z

i={X>1,X>=10}

k={X>=10,X>1}

o={Y+Z,5-V}

i={X>1,X>=10}

g={Y+Z}

o={Y+Z,X>1,X>=10}

B6

i={Y+Z}

g={Y+Z,7-V}

k={}

o={Y+Z,7-V}

g={Y+Z,5-V}

Global CSE III – Algorithm

Consider each statement s : x := y + z in block B such that
(y + z) ∈ in[B].

1 Find all statements d : R := y + z in B’s ancestor blocks, such
that y + z could reach s.

2 Replace d : R := y + z with d : T1 := y + z ;R := T1.

3 Replace s : x := y + z with s : x := T1.

d2 : R := y + z

s : x := T1

d1 : W := y + z

d3 : W := T1

d1 : T1 := y + z d2 : T1 := y + z

d4 : R := T1

in={· · · , y + z, · · · }

s : x := y + z

Y + Z

d4: X := Y + Z

d5: T := 5 - V

d7 : R := Y + Z

d8: S := 7 - V

goto B2

B6

B4

d6: T1 := Y + Z

d5: T := 5 - V

d9: X := T1

d4: T1 := Y + Z

d10: V := T1

goto B2

d7 : R := T1

d8: S := 7 - V

Changed

B5
ChangedNew

New

B5B4

d6: V := Y + Z

B6 in[B6]={Y+Z}Search for

Search for

Y + Z

Summary

Readings and References

Read the Tiger book: 220–225, 387–393

Or read the Dragon book: 608–611, 622, 627–628, 633–635,
638–642.

Summary I

Global Data-Flow Analysis tracks the flow of values and
computations across basic block boundaries.

Typically, before we can perform a particular global
optimization, we have to collect (one or more kinds of) global
data-flow information.

The data-flow information is normally collected for each basic
block of the flow-graph. We can then easily compute the
relevant information for points within each basic block, on a
need-to-know basis.

Summary II

Data-flow problems are represented as data-flow equations.
Each equation manipulates sets of computations:

gen is the set of computations generated locally
within a basic block.

kill is the set of computations generated outside the
block, which could possibly be invalidated by
computations within the block.

in is the set of computations available at the
beginning of a block.

out is the set of computations available at the end
of a block.

gen[B] and kill[B] are generated locally for each basic
block B, without ever looking at computations outside the
block.

Summary III

in[B] and out[B] store the actual global data-flow
information for the block B. They are computed from gen[B]

and kill[B] and from in and out of neighboring blocks.

A typical data-flow equation for some problem P might look
like this:

outP[B] = genP[B] ∪ (inP[B] − killP[B])

It says that the computations available at the the end of the
block (out[B]) are those available at the entrance of the
block, plus those generated within the block, except those
computations generated outside the block that were
invalidated by computations inside the block.

Summary IV

Keep in mind that a global optimizer will solve many different
data-flow problems, all involving sets called gen, kill, in

and out, but that each problem has its own sets and
equations. So, for a particular block B, we may have
inReachDef[B], outReachDef[B], genReachDef[B], killReachDef[B],
and inAvailExpr[B], outAvailExpr[B], genAvailExpr[B],
killAvailExpr[B], etc.

Similary, each data-flow problem sets up its own set of unique
data-flow equations, although these equations may look
remarkably similar from one problem to the next:

Summary V

outReachD[B] = genReachD[B] ∪

(inReachD[B] − killReachD[B])

inReachD[B] =
⋃

P

outReachD[P]

outAvailE[B] = genAvailE[B] ∪

(inAvailE[B] − killAvailE[B])

inAvailE[B] =
⋃

P

outReachD[P]

inAvailE[B1] = {}

Summary VI

We have seen two data-flow problems:

Reaching Definition Analysis is used to build ud-chains, which
in turn are used to detect loop-invariant
computations (computations that produce the
same value regardless of how many times the
loop is executed).

Available Expression Analysis is used to optimize global
common subexpressions. For each point p in the
program we build the set of expressions that
must have been computed, and whose value
must still be current.

Summary VII

There are many other data-flow problems:

Live-Variable Analysis is used during code-generation to avoid
having to save a value stored in a register, if
that value has no future use in the program. A
live variable, on the other hand holds a value
which may be used later on.

Definition-Use Analysis builds definition-use chains, lists
which for each definition of a variable v holds
the possible uses of v ’s value. du-chains are
needed in order to perform copy propagation.

Homework

Homework I

Build the flow-graph and ud-chains for the procedure body
below. Then detect invariant computations, and — if possible
— move them out of the loop.

K := 1; I := 2;

REPEAT

IF I = 4 THEN

A := K + 1;

ELSE

A := K + 2;

I := I + A;

ENDIF;

UNTIL I <= 10;

K := K + A;

Exam Problems

Exam Problem I (a) [07.430 ’95]

An expression E is very busy if – regardless of which path we
take through the flow graph – E ’s value will be used before it
is killed. Example:

(1) BEGIN
(2) IF expr THEN
(3) V := A + 3;

(4) R := K + 3;

(5) ELSE
(6) Z := A + 3;

(7) K := 5;

(8) L := K + 3;

(9) END;

(10) END

Exam Problem I (b) [07.430 ’95]

A+3 is very busy at (2), since – regardless of which branch of
the IF-statement we take – A+3 will be used before it is killed.
However, K+3 is not very busy, since (in the ELSE-branch) it
is being killed by the assignment to K (at (7)) before it is
being used.

Very busy expression information is useful for register
allocation (very busy expressions will always be computed, and
should probably be allocated to a register) and when
performing code hoisting, i.e. moving code to a common
ancestor in the flow graph. Code hoisting applied to the
example above would produce the following:

Exam Problem I (b) [07.430 ’95]

(1) BEGIN
(1.5) T$0 := A + 3;

(2) IF expr THEN
(3) V := T$0;

(4) R := K + 3;

(5) ELSE
(6) Z := T$0;

(7) K := 5;

(8) L := K + 3;

(9) END;

(10) END

Data-Flow Equations:

The data-flow equations for computing very busy expressions
are:

Exam Problem I (c) [07.430 ’95]

in[B] = used[B] ∪ (out[B]− killed[B])

out[B] =
⋂

successors

S of B

in[S]

out[B] is the set of all expressions that are very busy at the end of the
basic block B.

in[B] is the set of all expressions that are very busy at the beginning
of B.

used[B] is the set of all expressions that are used before they are killed
in B.

killed[B] is the set of all expressions that are killed (i.e. their value is
invalidated) before they are used in B.

Exam Problem I (d) [07.430 ’95]

Consider the following routine:

BEGIN
X := 5; Y := 10;

IF e1 THEN
IF e2 THEN

A := X ∗ Y;

ELSE
B := 3;

V := X ∗ Y;

X := 1;

END;

ELSE
Y := 2; A := X ∗ Y;

END
END

Exam Problem I (e) [07.430 ’95]

1 Construct the control-flow graph for the routine.

2 Construct the used[B] and killed[B] sets for each basic
block of the control-flow graph.

3 Construct the resulting in[B] and out[B] sets for each basic
block of the control-flow graph.

