
CSc 553

Principles of Compilation

29 : Optimization IV

Department of Computer Science
University of Arizona

collberg@gmail.com

Copyright c© 2011 Christian Collberg

Introduction

Inline Expansion

Inline Expansion I

The most important and popular inter-procedural optimization
is inline expansion, that is replacing the call of a procedure
with the procedure’s body.

Why would you want to perform inlining? There are several
reasons:

1 There are a number of things that happen when a procedure
call is made:

1 evaluate the arguments of the call,

2 push the arguments onto the stack or move them to argument
transfer registers,

3 save registers that contain live values and that might be
trashed by the called routine,

4 make the jump to the called routine,

Inline Expansion II

1 continued. . .

5 make the jump to the called routine,

6 set up an activation record,

7 execute the body of the called routine,

8 return back to the callee, possibly returning a result,

9 deallocate the activation record.

2 Many of these actions don’t have to be performed if we inline
the callee in the caller, and hence much of the overhead
associated with procedure calls is optimized away.

3 More importantly, programs written in modern imperative and
OO-languages tend to be so littered with procedure/method
calls. . . .

Inline Expansion III

3 . . . This is the result of programming with abstract data types.
Hence, there is often very little opportunity for optimization.
However, when inlining is performed on a sequence of
procedure calls, the code from the bodies of several procedures
is combined, opening up a larger scope for optimization.

There are problems, of course. Obviously, in most cases the
size of the procedure call code will be less than the size of the
callee’s body’s code. So, the size of the program will increase
as calls are expanded.

Inline Expansion IV

A larger executable takes longer to load from secondary
storage and may affect the paging behavior of the machine.
More importantly, a routine (or an inner loop of a routine)
that fits within the instruction-cache before expansion, might
be too large for the cache after expansion.

Also,larger procedures need more registers (the register

pressure is higher) than small ones. If, after expansion, a
procedure is so large (or contains such complicated
expressions) that the number of registers provided by the
architecture is not enough, then spill code will have to be
inserted when we run out of registers.

Inline Expansion V

Several questions remain. Which procedures should be
inlined? Some languages (C++, Ada, Modula-3) allow the
user to specify (through a keyword or pragma) the procedures
that should be eligible for expansions. However, this implies
that a given procedure should always be expanded, regardless
of the environment in which it is called. This may not be the
best thing to do. For example, we might consider inlining a
call to P inside a tightly nested inner loop, but choose not to
do so in a module initialization code that is only executed
once.

Inline Expansion VI

Some compilers don’t rely on the user to decide on what
should be inlined. Instead they use

1 A static heuristic, such as “procedures which are

1 shorter than 10 lines and have fewer than 5 parameters or

2 are leaf routines (i.e. don’t make any calls themselves)

are candidates for inlining”.
2 A heuristic based on profiling. After running the program

through a profiler we know how many times each procedure is
likely to be called from each call site. Only inline small,
frequently called procedures.

Inline Expansion VII

How do we inline across module boundaries? We need access
to the code of the called procedure. If the procedure is
declared in a separately compiled module, this code is not

available. What do we do? Good question. . .

What’s the difference between inlining and macro expansion?
Inlining is performed after semantic analysis, macro expansion
before.

At which level do we perform the inlining?

intermediate code Most common.
source code Some source-to-source translators perform

inlining.
assembly code Doable (with some compiler cooperation), but

unusual.

Algorithm I

1 Build the call graph:

1 Create an empty directed graph G .
2 Add a node for each routine and for the main program.
3 If procedure P calls procedure Q then insert a directed edge

P → Q.

P R

S

TMain

Q V

G is actually a multigraph since a procedure might make
multiple calls to the same procedure.

Beware of indirect calls through procedure parameters or
variables, as well as method invocations!

Algorithm II

2 Pick routines to inline. Possible heuristics:

1 Discard recursive routines (Perform a topological sort of the
call graph. Cycles indicate recursion.) or just inline them one
or two levels deep.

2 Select routines with indegree=1.
3 Select calls to small routines in inner loops.
4 Rely on user-defined INLINE pragmas.
5 Use profiling information.
6 Consider effects on caching, paging, register pressure, total

code size, ...
7 ...

Algorithm III

3 FOR each call P(a1, · · · , an) in Q to inline procedure
P(f1, · · · , fn), in reverse topological order of the call graph
DO

1 Replace the call P(a1, · · · , an) with P ’s body.
2 Replace references to call-by-reference formal fk with a

reference to the corresponding actual parameter ak .
3 For each call-by-value formal parameter fk create a new local

ck . Insert code to copy the call-by-value actual ak into ck .
Replace references to the call-by-value formal fk with a
reference to its copy ck .

4 For each of P ’s local variables lk create a new local vk in Q.
Replace references to local variable lk with a reference to vk .

Topological Order

Example:

main(){ Q(); ... Q(); };
P(){ R(); ... S(); };
T(){ R();}; R(){S();};
S(){ V();}; Q(){}; V(){};

Topological Order:

7

P R

S

TMain

Q V
1

3

2

4

5

6

8

Performing the inlining in reverse topological order saves time:
expanding V in S before expanding S in R and P is faster than
expanding S in P, then S in R, and then V in P and R.

Note: there is no path main → T. Maybe T could be deleted?

Inlining Example (Original)

TYPE T = ARRAY [1..100] OF CHAR;

PROCEDURE P (n : INTEGER;

z : T; VAR y :INTEGER);

VAR i : INTEGER;

BEGIN

IF n < 100 THEN

FOR i := 1 TO n DO

y := z[i] + y;

z[i] := 0;

ENDFOR

ENDIF

END P;

VAR S : INTEGER; A : T;

BEGIN P(10, A, S); END

Inlining Example (Expanded)

TYPE T = ARRAY [1..100] OF CHAR;

VAR S, $n, $i : INTEGER;

A, $z : T;

BEGIN

$n := 10;

copy($z, A, 100);

IF $n < 100 THEN

FOR $i := 1 TO $n DO

S := $z[$i] + S;

$z[$i] := 0;

ENDFOR

ENDIF

END

Inlining Example (Optimized)

⇓ Optimize

TYPE T = ARRAY [1..100] OF CHAR;

VAR S, $i : INTEGER;

A, $z : T;

BEGIN

copy($z, A, 100);

FOR $i := 1 TO 10 DO

S := $z[$i] + S;

$z[$i] := 0;

ENDFOR

END

Inlining in OO Languages

Inlining Methods I

Consider a method invocation m.P().

The actual procedure called will depend on the run-time type
of m.

If more than one method can be invoked at a particular call
site, we have to inline all possible methods.

The appropriate code is selected code by branching on the
type of m.

T

m.type=class1

m.type=class2

code for

class2::P

code for

class1::P

call m.P()
T F

F

Inline⇒

Inlining Methods II

To improve on method inlining we would like to find out when
a call m.P() can call exactly one method.

TYPE T = CLASS [f : T][

METHOD M (); BEGIN END M;

];

TYPE S = CLASS EXTENDS T [

][

METHOD N (); BEGIN END N;

METHOD M (); BEGIN END M;

];

VAR x : T; y : S;

BEGIN

x.M();

y.M();

END;

Inlining Methods III

Inheritance Hierarchy Analysis

For each type T and method M in T , find the set ST ,M of
method overrides of M in the inheritance hierarchy tree
rooted in T .
If x is of type T , ST ,M contains the methods that can be
called by x .M().

Example

TYPE T = CLASS [][METHOD M (); BEGIN END M;];

TYPE S = CLASS EXTENDS T [][

METHOD N (); BEGIN END N;

METHOD M (); BEGIN END M;];

VAR x : T; y : S;

BEGIN

x.M(); ⇐ ST ,M = {T .M,S .M}
y.M(); ⇐ SS,M = {S .M}

END;

Inlining Methods IV — Intraprocedural Type Propagation

We can improve on type hierarchy analysis by using a variant
of the Reaching Definitions data flow analysis.

TYPE T = CLASS [][METHOD M (); · · ·];
TYPE S = CLASS EXTENDS T [][

METHOD M (); BEGIN END M;];

VAR p : S; o : T;

BEGIN

p := NEW S;

IF e THEN

o := NEW T; o.M();

ELSE

o := p; o.M();

ENDIF;

o.M();

o := NARROW(o, S); o.M();

END;

Inlining Methods V

out[B] = Gen[B] ∪ (in[B]− Kill[B])

in[B] =
⋃

preds P of B

out[P]

We’ll use sets of pairs 〈t,S〉, where S is the set of possible
types of variable t.

The equations are defined over statements, not basic blocks.

The function TypeOf(x) is the set of current types of x.

Gen[B] = {〈v , {S}〉} statement B contains an operation

that guarantees that v will have type S .

Out[B] = {〈v , {S}〉, 〈u, {S ,T}〉} after statement B , v will

have type S and u will have type S or T .

Inlining Methods VI

Gen(v := NEW t) = 〈v , {t}〉 After v := NEW t, v must have the
type t.

Gen(v :=u) = 〈v , TypeOf(u)〉 After an assignment v := u, the

set of possible types of v is the same as the current
set of possible types of u.

Gen(v := NARROW(u,T)) = 〈v , TypeOf(u) ∩ T 〉 After an

assignment v := NARROW(u,T), the set of possible
types of v contains those current possible types of u

that are also a subtype of T .

Kill(v :=u) = 〈v , TypeOf(v)〉 After an assignment v :=u, v may

not have the same type that it had before.

Kill(v := NEW t) = 〈v , TypeOf(v)〉

Kill(v := NARROW(u,T)) = 〈v , TypeOf(v)〉

o.M();

o := NARROW(o,S)

o.M()

o.M()

o := NEW T

if (e) GOTO B2

p := NEW S

B1

B2

B7

B8

B9

B3

B4

o.M();

o := p

B5

B6

G = {〈o, T (p)〉}

G = {〈p, {S}〉}
K = {〈p, T (p)〉}

G = {〈o, {T}〉}
K = {〈o, T (o)〉}

NOTE: T (x) = TypeOf(x)

G = {〈o, T (o) ∩ {S}〉}
K = {〈o,T (o)〉}

K = {〈o, T (o)〉}

o.M()

o := NEW T o := p

o.M();

o := NARROW(o,S)

o.M()

if (e) GOTO B2

p := NEW S

B2

B1

o.M();

B5

B7

B9

B8

B3

B4 B6

K = {〈o, {}〉}

I = {}

G = {〈p, {S}〉}
K = {〈p, T (p)〉}

O = {〈p, {S}〉}

O = {〈o, {S}〉, 〈p, {S}〉}
I = {〈o, {S, T}〉, 〈p, {S}〉}

G = {〈o, {S, T} ∩ {S}〉}
K = {〈o, {S, T}〉}

I = {〈p, {S}〉}I = {〈p, {S}〉}
O = {〈o, {T}〉, 〈p, {S}〉}

I = {〈o, {S}〉, 〈p, {S}〉}

{〈o, {S, T}〉, 〈p, {S}〉}
I = O[B4] ∪ O[B6] =

O = {〈o, {S}〉,
〈p, {S}〉}

G = {〈o, {T}〉}
K = {〈o, {}〉}

G = {〈o, {S}〉}

Summary

Readings and References

Read the Tiger book, Section 15.4. This describes inlining in
functional languages, but the ideas are the same.

