
CSc 553

Principles of Compilation

30 : Alias Analysis

Department of Computer Science
University of Arizona

collberg@gmail.com

Copyright c© 2011 Christian Collberg

Aliasing – Definitions I

Aliasing occurs when two variables refer to the same memory
location.

Aliasing occurs in languages with reference parameters,
pointers, or arrays.

There are two alias analysis problems. Let a and b be
references to memory locations. At a program point p

may-alias(p) is the set of pairs 〈a, b〉 such that there exists at
least one execution path to p, where a and b

refer to the same memory location.
must-alias(p) is a set of pairs 〈a, b〉 such that on all execution

paths to p, a and b refer to the same memory
location.

Aliasing – Definitions II

An alias analysis algorithm can be

flow-sensitive i.e. it takes the flow of control into account
when computing aliases, or

flow-insensitive i.e. it ignores if-statements, loops, etc.

There are intra-procedural and inter-procedural alias analysis
algorithms.

In the general case alias analysis is undecidable. However,
there exist many conservative algorithms that perform well for
actual programs written by humans.

Aliasing – Definitions III

A conservative may-alias analysis algorithm may sometimes
report that two variables p and q might refer to the same
memory location, while, in fact, this could never happen.
Equivalently, p may-alias q if we cannot prove that p is never
an alias for q.

Where Does Aliasing Occur?

Formal–Formal Aliasing

VAR a : INTEGER;

PROCEDURE F (VAR b, c : INTEGER);

BEGIN

b := c + 6; PRINT c;

END F;

BEGIN a := 5; F(a, a); END.

Generated Code

F: load R1, c^ # R1 holds c

add R2, R1, 6

store b^, R2

PRINT R1 # PRINT c

main: storec a, 5 # a := 5

pusha a

pusha a

call F # F(&a,&a)

Formal–Global Aliasing

VAR a : INTEGER;

PROCEDURE F (VAR b: INTEGER);

VAR x : INTEGER;

BEGIN

x := a; b := 6; PRINT a;

END F;

BEGIN a := 5; F(a); END.

Generated Code

F: load R1, a # R1 holds a

store x, R1

store b^, 6

PRINT R1 # PRINT a

main: storec a, 5 # a := 5

pusha a

call F # F(&a)

Pointer–Pointer Aliasing

TYPE Ptr = REF RECORD [N:Ptr; V:INTEGER];

VAR a,b : Ptr; VAR X : INTEGER := 7;

BEGIN

b := a := NEW Ptr;

b^.V := X; a^.V := 5;

PRINT b^.V;

END.

Generated Code

main: storec X, 7 # X := 7

new a, 8 # a := NEW Ptr

copy b, a # b := a

load R1, X # R1 holds X

store b^+4, R1 # b^.V := X

storec a^+4, 5 # a^.V := 5

PRINT R1 # PRINT b^.X;

Array Element Aliasing

VAR A : ARRAY [0..100] OF INTEGER;

VAR i, j, X : INTEGER;

BEGIN

i:=5; j:=2; X:=9; · · · ; j:=j+3;

A[i] := X; A[j] := 8; PRINT A[i];

END.

Generated Code

main: storec i, 5 # i := 5

storec j, 2 # j := 2

storec X, 9 # X := 9

· · · · · ·
add j, 3 # j := j + 3

load R1, X # R1 holds X

store A[i], R1 # A[i] := X

store A[j], 8 # A[j] := 8

PRINT R1 # PRINT A[i]

Classifying Aliasing

Flow-Sensitive vs. Flow-Insensitive

Flow-Sensitive Flow-Insensitive

S1 : p=&r; {<*p,r>} {<*p,r>,<*q,s>,<*q,r>,<*q,t>}
if (· · ·)

S2 : q=p {<*p,r>,<*q,r>} {<*p,r>,<*q,s>,<*q,r>,<*q,t>}
else

S3 : q=&s {<*p,r>,<*q,s>} {<*p,r>,<*q,s>,<*q,r>,<*q,t>}
S4 : · · · {<*p,r>,<*q,s> {<*p,r>,<*q,s>,<*q,r>,<*q,t>}

<*q,r>} {<*p,r>,<*q,s>,<*q,r>,<*q,t>}
S5 : q=&t {<*p,r>,<*q,t>} {<*p,r>,<*q,s>,<*q,r>,<*q,t>}

<p,q> is a common notation for p may-alias q.
Flow-insensitive algorithms are cheaper. Flow-sensitive
algorithms are more precise.

Using May-Alias Analysis

Let z and v be pointers in the following program fragment:

(1) x := y + z^

(2) v^ := 5

(3) PRINT y + z^

If we were performing an Available Expressions data flow
analysis in order to find common sub-expressions, we would
have to assume that the value computed for y + z^ on line
(1) was killed by the assignment on line (2).

However, if alias analysis could determine that
may-alias(z,v)=false then we could be sure that replacing
y + z^ by x on line (3) would be safe.

A Type-Based Algorithm

Type-Based Algorithms

In strongly typed languages (Java, Modula-3) we can use a
type-based alias analysis algorithm.

Idea: if p and q are pointers that point to different types of
objects, then they cannot possibly be aliases.

Below, p may-alias r; but p and q cannot possibly be aliases.

This is an example of a flow-insensitive algorithm; we don’t
detect that p and r actually point to different objects.

TYPE T1 : POINTER TO CHAR;

TYPE T2 : POINTER TO REAL;

VAR p,r : T1; VAR q : T2;

BEGIN

p := NEW T1; r := NEW T1; q := NEW T2;

END;

A Flow-Sensitive Algorithm

A Flow-Sensitive Algorithm I

Assume the following language (p and q are pointers):

p := new T create a new object of type T .

p := &a p now points only to a.

p := q p now points only to what q points to.

p := nil p now points to nothing.

The language also has the standard control structures.

May-alias analysis is a forward-flow data-flow analysis problem.

A Flow-Sensitive Algorithm II

We’ll be manipulating sets of alias pairs <p,q>. p and q are
access paths, either:

1 l-value’d expressions (such as a[i].v^[k].w) or
2 program locations S1, S2, · · · .

Program locations are used when new dynamic data is created
using new.

in[B] and out[B] are sets of <p,q>-pairs.

< p, q > ∈ in[B] if p and q could refer to the same memory
location at the beginning of B.

out[B] = transB(in[B])

in[B] =
⋃

predecessors

P of B

out[P]

A Flow-Sensitive Algorithm III

transB(S) is a transfer function. If S is the alias pairs
defined at the beginning of B , then transB(S) is the set of
pairs defined at the exit of B .

B transB(S)

d: p := new T (S − {< p, b > | any b}) ∪ {< p, d >}
p := &a (S − {< p, b > | any b}) ∪ {< p, a >}
p := q (S − {< p, b > | any b}) ∪

{< p, b > | < q, b > in S}
p := nil S − {< p, b > | any b}

Example I/A – Initial State

i={}

p := q

q := &c

p := &a
q := &a

repeat

q := &c;

if (...)

q := &a
else

p := &a

p := q

until ...;

Example I/B – After First Iteration

q := &c

p := q

i={<q,c>}

o={<q,c>,<p,a>}
p := &a q := &a

o={<q,a>}

i={<q,c>}

i={}

o={<q,c>}

={<q,c>,<p,a>,<q,a>}

o={<q,c>,<q,a>,<p,c>,<p,a>}

i={<q,c>,<p,a>} ∪ {<q,a>}

Example I/C – After Second Iteration

p := q

o={<q,c>,<p,c>,<p,a>}

i={<q,c>,<q,a>,<p,c>,<p,a>}

={<q,c>,<p,a>,<q,a>,<p,c>}

o={<q,c>,<q,a>,<p,c>,<p,a>}

q := &a

i={<q,c>,<p,c>,<p,a>}

i={<q,c>,<p,c>,<p,a>}

o={<q,c>,<p,a>}
p := &a

o={<q,a>,<p,a>,<p,c>}

q := &c

i={<q,c>,<p,a>} ∪ {<q,a>,<p,a>,<p,c>}

Example II/A

TYPE T =

REF RECORD[head:INTEGER;tail:T];

VAR p,q : T;

BEGIN

S1: p := NEW T;

S2: p^.head := 0;

S3: p^.tail := NIL;

S4: q := NEW T;

S5: q^.head := 6;

S6: q^.tail := p;

IF a=0 THEN

S7: p := q;

ENDIF;

S8: p^.head := 4;

END;

q
tail:
head: 6

tail: /
head: 0

p

Example II/B

S1: p:= new T in[S1] = {}
out[S1]= {< p,S1 >}

S2: p^.head := 0 in[S2] = out[S1] = {< p,S1 >}
out[S2]= {< p,S1 >}

S3: p^.tail := nil in[S3] = out[S2] = {< p,S1 >}
out[S3]= {< p,S1 >}

S4: q:= new T in[S4] = out[S3] = {< p,S1 >}
out[S4]= (in[S4] − {}) ∪ {< q,S4 >}

= {< p,S1 >,< q,S4 >}

Example II/C

S5: q^.head:=6 in[S5] = out[S4] = {< p,S1 >,< q,S4 >}
out[S5]= {< p,S1 >,< q,S4 >}

S6: q^.tail:=p in[S6] = out[S5] = {< p,S1 >,< q,S4 >}
out[S6]= (in[S6] − {}) ∪ {< q.tail,S1 >}

= {< p,S1 >,< q,S4 >,< q.tail,S1 >}
S7: p:=q in[S7] = out[S6] =

= {< p,S1 >,< q,S4 >,< q.tail,S1 >}
out[S7]= (in[S6] − {< p,S1 >}) ∪ {< p,S4 >}

= {< p,S4 >,< q,S4 >,< q.tail,S1 >}

Example II/D

S8: p^.head := 4 in[S8] = out[S6] ∪ out[S7] =
= {< p,S1 >,< p,S4 >,

< q,S4 >,< q.tail,S1 >}
out[S8]= in[S8] =

= {< p,S1 >,< p,S4 >,

< q,S4 >,< q.tail,S1 >}

Summary

Complexity Results

Inter-procedural case is no more difficult than intra-procedural
(wrt P vs. NP).

1-level of indirection ⇒ P; ≥ 2-levels of indirection ⇒ NP.

Banning’79 Reference formals, no pointers, no structures ⇒ P.

Horwitz’97 Flow-insensitive, may-alias, arbitrary levels of
pointers, arbitrary pointer dereferencing
⇒ NP − hard.

Landi&Ryder’91 Flow-sensitive, may-alias, multi-level pointers,
intra-procedural ⇒ NP − hard.

Landi’92 Flow-sensitive, must-alias, multi-level pointers,
intra-procedural, dynamic memory allocation ⇒
Undecidable.

Shape Analysis I

It is often useful to determine what kinds of dynamic
structures a program constructs.

For example, we might want to find out what a pointer p
points to at a particular point in the program. Is it a linked
list? A tree structure? A DAG?

If we know that
1 p points to a (binary) tree structure, and
2 the program contains a call Q(p), and
3 Q doesn’t alter p

then we can parallelize the call to Q, running (say)
Q(p^.left) and Q(p^.right) on different processors. If p
instead turns out to point to a general graph structure, then
this parallelization will not work.

Shape Analysis II

Shape analysis requires alias analysis. Hence, all algorithms
are approximate.

Ghiya’96a Accurate for programs that build simple data

structures (trees, arrays of trees). Cannot handle
major structural changes to the data structure.

Chase’90 Problems with destructive updates. Handles list

append, but not in-place list reversal.

Hendren’90 Cannot handle cyclic structures.

various Only handle recursive structures no more than k

levels deep.

Deutsch’94 Powerful, but large (8000 lines of ML) and slow (30
seconds to analyze a 50 line program).

Readings and References

Appel, “Modern Compiler Implementation in {Java,C,ML}”,
pp. 402–407.

The Dragon Book: pp. 648–652.

Further readings:

Shape analysis: Rakesh Ghiya, “Practical Techniques for
Interprocedural Heap Analysis”, PhD Thesis, McGill Univ, Jan
1996.
Complexity Results: Bill Landi, “Interprocedural Aliasing in the
Presence of Pointers”, PhD Thesis, Rutgers, Jan 1992.

Summary

We should track aliases across procedure calls. This is
inter-procedural alias analysis. See the Dragon book, pp.
655–660.

Why is aliasing difficult? A program that has recursive data
structures can have an infinite number of objects which can
alias each other. Any aliasing algorithm must use a finite
representation of all possible objects.

Many (all?) static analysis techniques require alias analysis.
Much use in software engineering, e.g. in the analysis of
legacy programs.

Pure functional languages don’t need alias analysis!

