
CSc 553

Principles of Compilation

32 : Scientific Codes

Department of Computer Science
University of Arizona

collberg@gmail.com

Copyright c© 2011 Christian Collberg

Scientific Programs

In the next couple of lectures we will concentrate on scientific

programs. These are programs used in science and
engineering.

As we will see, these programs don’t look much like the
programs you or I write. They don’t manipulate objects, they
don’t use dynamic dispatch. Instead, they manipulate floating
point arrays in (often) very regular patterns, using FOR-loops.
And they’re written in FORTRAN.

The people who run these programs care deeply about speed.
We will discuss two ways of speeding up scientific programs:
parallelizing them and making efficient use of the memory
hierarchy.

Who Needs Speed?

These are some of the traditional users/uses of high-performance
computers:

weather forecasting

crypt- & image analysis Very secret!

aeronautical ind. Designing and testing aircrafts. Simulated wind
tunnels. “Computational Fluid Dynamics” (CFD).

automotive ind. Simulated crash testing.

nuclear ind. Simulation of thermonuclear devices.

computer ind. Design and simulation of VLSI circuits.

pharmaceutical ind. Drug design.

What Do These Programs
Look Like?

What Kind of Programs? I

They are written i FORTRAN! Or sometimes C.

They are often old, DUSTY-DECK, sequential, and difficult
to maintain and rewrite.

They use many (multidimensional) arrays.

They consist largely of nested FOR-loops (called DO-loops in
FORTRAN).

A loop nest is a set of loops one inside the next.
In a perfect loop nest every loop (except the innermost one)
contains exactly one loop and nothing more.

What Kind of Programs? II

A loop that accesses every fourth element of an array is
stride-4, if it accesses every element (in order) it’s stride-1,
etc. The following loop has stride-3 accesses to A, and
stride-6 access to B:

FOR i := 1 to n BY 3 DO

A[i] := B[2*i]

END

A number of benchmarks have been constructed to test how
compilers/hardware handle these kinds of codes:

1 Livermore loops (of Lawrence Livermore Labs)
2 NAS benchmark
3 Linpack

Common Operations

Scatter

FOR i := 1 TO n DO

v[j[i]] := a[i]

END

Gather

FOR i := 1 TO n DO

v[i] := a[j[i]]

END

Reductions

S := 0; P := 1;

FOR i := 1 TO n DO

S := S + v[i]

P := P * v[i]

END

Example Loops I

Livermore loop: first sum.

FORTRAN

DO 11 k = 2,n

11 X(k)= X(k-1) + Y(k)

C

for (k=1 ; k<n ; k++)

x[k] = x[k-1] + y[k];

FORTRAN weirdness

FORTRAN DO-loops:
DO foot dovar = inital,final,incr . foot is a
statement number (label). incr can be omitted.

CONTINUE serves as a placeholder for a label. It does nothing.

FORTRAN array references use "A()", not "A[]".

Variables that start with I,J,K are always integers.

CONJG is a built-in FORTRAN function that takes a complex
number x + iy (expressed as (X, Y) in FORTRAN) as
argument and returns the complex conjugate x − iy . Just
thought you’d like to know. . .

In FORTRAN the comparison operators <,≤,=, 6=, >,≥ are
called .LT., .LE., .EQ., .GT., .GE., and .NE..

Example Loops II

Livermore loop: general linear recurrence equation.

FORTRAN

DO 6 i= 2,n

DO 6 k= 1,i-1

W(i)= W(i) + B(i,k) * W(i-k)

6 CONTINUE

C

for (i=1 ; i<n ; i++)

for (k=0 ; k<i ; k++)

w[i] += b[k][i] * w[(i-k)-1];

Example Loops III

Livermore loop: matrix*matrix product

FORTRAN

DO 21 k= 1,25

DO 21 i= 1,25

DO 21 j= 1,n

PX(i,j)= PX(i,j) + VY(i,k) * CX(k,j)

21 CONTINUE

C

for (k=0 ; k<25 ; k++)

for (i=0 ; i<25 ; i++)

for (j=0 ; j<n ; j++)

px[j][i] += vy[k][i] * cx[j][k];

Example Loops IV

Linpack: constant (da) times a vector (dx incremented by
incx) plus a vector (dy incremented by incy).

daxpy(n,da,dx,incx,dy,incy)

double dx[],dy[],da; int incx,incy,n; {
int i,ix,iy,m,mp1;

if ((n <= 0) || (da == 0.0)) return;

if(incx != 1 || incy != 1) {
ix = 0; iy = 0;

if(incx < 0) ix = (-n+1)*incx;

if(incy < 0)iy = (-n+1)*incy;

for (i = 0;i < n; i++) {
dy[iy] = dy[iy] + da*dx[ix];

ix = ix + incx; iy = iy + incy;}
return; }

for (i = 0;i < n; i++) dy[i] = dy[i] + da*dx[i];}

Example Loops V (a)

NAS Benchmark: complex radix 2 ffts on the first dimension
of the 2-d array x.

SUBROUTINE CFFT2D1 (IS,M,M1,N,X,W,IP)

COMPLEX X(M1,N), W(M), CT, CX

INTEGER IP(2,M)

DATA PI/3.141592653589793/

DO 110 I = 1, M

IP(1,I) = I

110 CONTINUE

L = 1I1 = 1

Example Loops V (b)

120 I2 = 3 - I1

DO 130 J = L, M2, L

CX = W(J-L+1)

IF (IS .LT. 0) CX = CONJG (CX)

DO 130 I = J-L+1, J

II = IP(I1,I)

IP(I2,I+J-L) = II

IM = IP(I1,I+M2)

IP(I2,I+J) = IM

DO 130 K = 1, N

CT = X(II,K) - X(IM,K)

X(II,K) = X(II,K) + X(IM,K)

X(IM,K) = CT * CX

130 CONTINUE

Example Loops V (c)

L = 2 * L

I1 = I2

IF (L .LE. M2) GOTO 120

DO 150 I = 1, M

II = IP(I1,I)

IF (II .GT. I) THEN

DO 140 K = 1, N

CT = X(I,K)

X(I,K) = X(II,K)

X(II,K) = CT

140 CONTINUE

ENDIF

150 CONTINUE

RETURN

END

Floating Point Computations

Floating Point Computation I

All scientific programs manipulate floating point numbers.
Many transformations that are legal on an integer expression
are unsafe on the equivalent floating point expressions.

In IEEE floating point

x ∗ 0 = 0

may not be true, since if x = ∞,

∞∗ 0 = NaN

(NaN ≡ Not a Number).

Similarly,
x + 0 = 0

may not be true, since if x = NaN , x + 0 would generate an
exception, but the right hand side wouldn’t.

Floating Point Computation II

Let R∞ be the largest FP number. Then

1.0 + (R∞ −R∞) = 1.0

but
(1.0 + R∞) −R∞ = 0.0

We can often safely convert a division by a constant into the
equivalent multiplication. For example,

X/16.0

can be transformed to

X ∗ 0.0625

because both 16.0 and 0.0625 can be represented exactly.

Floating Point Computation III

Scientific programs iterate over arrays of floating point
numbers. We will often want to transform these (for-) loops
to improve efficiency. We still have to be careful to maintain
correctness.

Assume that we want to sum the elements of the following
array:

[1] [2] [3] [4] [5] [6] [7] [· · ·] [3 ∗ n]

1.0 R∞ −R∞ 1.0 R∞ −R∞ 1.0 · · · −R∞

In the next few slides we’ll show how the access pattern will
affect the result of the summation.

Floating Point Computation IV

Accessing the array in stride-1 yields a result of 0.0 .

s := 0.0; n := 3

FOR i := 1 TO 3*n DO

s := s + A[i]

ENDFOR

[1] [2] [3] [4] [5] [6] [7] [8] [9]

1.0 R∞ −R∞ 1.0 R∞ −R∞ 1.0 R∞ −R∞

↑ 1 ↑ 2 ↑ 3 ↑ 4 ↑ 5 ↑ 6 ↑ 7 ↑ 8 ↑ 9

(((((((1.0+R∞)−R∞)+1.0)+R∞)−R∞)+1.0)+R∞)−R∞ = 0.0

Floating Point Computation V

Accessing the array backwards yields the result of 1.0 .

s := 0.0; n := 3

FOR i := 3*n TO 1 BY -1 DO

s := s + A[i]

ENDFOR

[1] [2] [3] [4] [5] [6] [7] [8] [9]

1.0 R∞ −R∞ 1.0 R∞ −R∞ 1.0 R∞ −R∞

↑ 9 ↑ 8 ↑ 7 ↑ 6 ↑ 5 ↑ 4 ↑ 3 ↑ 2 ↑ 1

(((((((−R∞+R∞)+1.0)−R∞)+R∞)+1.0)−R∞)+R∞)+1.0 = 1.0

Floating Point Computation VI

Accessing the array backwards in blocks of 3 yields n .

s := 0.0; n := 3

FOR i := 3*n TO 3 BY -3 DO

t := 0.0

FOR j := i TO i-2 BY -1 DO t := t + A[j] ENDFOR

s := s + t

ENDFOR

[1] [2] [3] [4] [5] [6] [7] [8] [9]

1.0 R∞ −R∞ 1.0 R∞ −R∞ 1.0 R∞ −R∞

↑ 9 ↑ 8 ↑ 7 ↑ 6 ↑ 5 ↑ 4 ↑ 3 ↑ 2 ↑ 1
((−R∞ + R∞) + 1) + · · · + ((−R∞ + R∞) + 1) = 3.0

Readings and References

David Goldberg, What Every Computer Scientist Should

Know about Floating-Point Arithmetic., ACM Computing
Surveys, Volume 23, Number 1, 1991,
http://www.acm.org/pubs/citations/journals/surveys/1991-23-1/p5-goldberg/.

