
CSc 553

Principles of Compilation

35 : Parallel Computers

Department of Computer Science

University of Arizona

collberg@gmail.com

Copyright c© 2011 Christian Collberg

The Need for Speed I

Lets assume that we need to solve a particular problem P . We
must have a solution to P before a certain time T .

Example 1: P=forecasting tomorrow’s weather, T=today. A
forcast for tomorrow’s weather is no good to us if it’s not
ready until the day after tomorrow!

Example 2: P=cryptanalysis, T=ASAP. If the enemy sends
an encrypted message Attack at dawn! we’d better crack it
quickly!

So, we’ll we try to solve P using the fastest processor on the
market.

The Need for Speed II

If that’s not fast enough, our only choice is to go with a
multi-processor machine. You can use multi-processors for a
variety of reasons such as increased reliability and throughput
(solving lots of little problems quickly), but our aim is to solve
one really large problem really fast.

Note that when we talk about time we mean wall (or real or
clock) time, not CPU time. A parallel program (one which
runs on several processors) will normally use more CPU time
than one that runs on a single processor. That’s OK; all we’re
interested in is that the program finishes as soon as possible,
i.e. uses a minimum amount of wall time.

Kinds of Parallel Computers

Kinds of Parallel Computers I

Parallel computers are usually classified as either SIMD
(“sim-dee”) or MIMD (“mim-dee”) and as having either
shared or distributed memory.

MIMD vs. SIMD

SIMD=Single Instruction Multiple Data. The idea is that
there is one single stream of instructions that operate on
different multiple data items. So, you may have one single
MUL-instruction that initiates thousands of multiplications
between different pairs of floating point values.

MIMD=Multiple Instructions Multiple Data. Several
independent instruction streams operate on different data
items.

One instruction stream

a

a
t

A E

F
B

C

D

mul
div
add
call
jmp
add

sub
add
add
add
call
mul

add
sub
mul
jmp
add
call

Instruction
stream 1

Instruction
stream 2

Instruction
stream 3

Multiple Instructions Multiple Data

add sub mul add div mul

D
a

a
t

A E

F
B

C

D

Single Instruction Multiple Data

D

Kinds of Parallel Computers III

Shared vs. Distributed Memory

In a shared memory machine every processor can access the
entire memory. Processors can therefore communicate via
shared variables.

In a distributed memory machine each processor has its own
private memory that no other processor can access.
Processors communicate through message passing.

Distributed Memory

CPU CPU CPU

Memory

Shared Memory

Mem

CPU

Mem

CPU

Mem

CPU

Mem

CPU

Shared Memory
Multiprocessors

Shared Memory MP I

Idea: Connect a (small) number of fast commodity
microprocessors through a fast memory bus to shared memory.

Almost all major computer vendors have such machines
available.

Accesses to shared memory becomes the major performance
bottleneck. To offset this, each CPU has a large fast local
cache. Still, memory bandwidth is limited, so these types of
machines are usually limited to a small number of processors.

Shared Memory MP II

1−4 MB Cache

CPU

Cache

CPU

Cache

CPU

Cache

CPU Memory
1−6 GB
(or more)
DRAM

Memory Bus

Sparc
MIPS
Alpha

SRAM

Cache Coherence I

Cache coherence is also a problem. If CPU1 writes a value into
some memory location Mi , then all other CPUs must be
notified of this change. If, for example, CPU2 already has a
copy of the value of Mi in its local cache, then this value must
be invalidated. To solve this problem, many architectures
employ snooping caches.

A snooping cache continuously monitors the bus to see if
some other CPU is writing to a particular memory location.
All this is managed by hardware.

Cache Coherence II

When writing code (or a compiler) for a shared-memory
multiprocessor it is important to optimize for good cache
behavior:

We should avoid cache thrashing. This occurs when two or
more processors access the same memory location. The data
will be pulled in and thrown out from the different caches.
We should avoid cache overflows. This occurs when we
attempt to load a data structure that doesn’t quite fit in the
cache. Part of the structure will have to be evicted.

Cache Coherence III

a!

Memory Bus

X := a+3

a: 9

CPU 5

a: 15

a := 15CPU 1 Memory

a: 9Cached
copy of

CPU 1 assigns a new value to variable a. CPU 5’s copy of a is
no longer valid and must be evicted from the cache.

Vector Machines

Vector Machines I

Vector machines are built on the SIMD paradigm. The idea is
that rather than operating on one scalar value at a time, we’ll
operate on an array of values. A vector machine may, for
example, have an add-vector instruction that takes two
64-element arrays and adds them together, element by
element.

Vector machines were the first high-performance computers to
be built. Although many people have predicted the demise of
supercomputing in general and vector machines in particular
(“the revenge of the killer micros”), vector machines are still
being built today and are still some of the fastest machines
around.

Vector Machines II

Vector computers need very fast memory access to transfer
vectors to and from the CPU. Some machines are built with
fast (and expensive) SRAM as main memory, others use
highly interleaved DRAM.

Modern vector machines are combination SIMD/MIMDs; they
are built as shared memory machines with custom vector
processors as processing units.

A typical vector processor has scalar as well as vector
registers. Vector length is bounded, typically 64 or 128
elements. There are vector as well as scalar instructions.

There are scalar instructions such as: add-integer,
mul-float, compare-float, load integer, etc.

Vector Machines III

The machine has arithmetic vector instructions such as these
(Vi are vector registers, Si is a scalar register):

Vi := Vj op Vk op=add, mul,· · · . Vector-to-vector

addition, multiplication, etc.
Vi := Vj op Sk op=add, mul,· · · . Scalar-to-vector

addition, multiplication, etc.

Load and store vector instructions:

Vi := memory[start:stop:incr] Load a vector from

memory into a vector register. Start loading at
address start, end at stop, load every incr

memory element.

memory[start:stop:incr] := Vi Store a vector register
into memory.

Vector Machines IV

Scatter/Gather vector instructions:

Vi := memory[Vk] Gather words from nonsequential

memory locations into register Vi :
Vi [r] := memory[Vk [r]].

memory[Vk]:= Vi Scatter words from elements of register

Vi to nonsequential memory locations:
memory[Vk [r]] := Vi [r].

Gather Example:

V1, V2 are vector registers, A an array.

V1=[2,4,1,3], A=[20,10,15,99].

V2:=A[V1] ⇒ V2=[10,99,20,15].

Scatter Example:

V1=[2,4,1,3], V2=[20,10,15,99].

A[V1]:=V2 ⇒ A=[100,99,20,15].

Vector Machines V

Bit-operations:
Vi := PopCount Vj

Vi [r] := number of bits set in Vj [r].

Vi := FirstBitSet Vj

Vi [r] := number of leading zeroes in Vj [r].
Other vector instructions:
Si := Vj [Sk] Get vector element.

Vj [Sk] := Si Set vector element.

Vi := Vj ShiftLeft Sk Shift register Vj left Sk steps.

Vi := Merge Vj , Vk By Vm Vector merge.

Vi [r] := if Vm[r] = 1 then Vj [r] else Vk [r].

VL := C Set the vector length to C. Future vector
instructions will operate on vectors of length C.
C is limited by the vectore register length.

Vector Machines VI

Example

FOR i := 1 to n DO

A[i] := B[i]

END

Vector Code (one processor)

; Assume r1 holds address of A.

; Assume r2 holds address of B.

; Assume r3 holds n.

setvl r3 ; Set vector length.

loadv v1, (r2) ; Load v1 from B.

storev v1, (r1) ; Store v1 into A.

Here we assume that A & B are arrays that are short enough
to fit in a vector register. What do we do when they’re not?

Vector Machines VII

When the arrays won’t fit in a vector register we have to
strip-mine. I.e., looping over the vector, performing the
vector operations repeatedly until the entire array is processed.
Assume the vector length is 64:

Before Strip Mining

FOR i := 1 to 1024 DO

A[i] := B[i]

END

After Strip Mining

FOR i := 0 to 15 DO

r1 := address of A[i*16]

r2 := address of B[i*16]

loadv v1, (r2) ; Load v1 from B.

storev v1, (r1) ; Store v1 into A.

END

Distributed Memory
Multiprocessors

Distributed Memory MPs

Network

CPU

Memory

Network
Inteface

CPU

Memory

Network
Inteface

CPU

Memory

Network
Inteface

CPU

Memory

Network
Inteface

High speed

The data is distributed over the processor nodes. Nodes
communicate via message passing.

Distributed Memory MPs — Typical operations

send(P, M) Send message (data) M to processor P.

receive(M) Wait to receive a message M.

broadcast(M) Send message (data) M to all processors.

multicast(P, M) Send message (data) M to all processors in
the group P.

Example: Summing a Vector

memory:

Node 1 Node 2

Node 3

FOR i:=1 TO 10 DO
 S += A[i]

Broadcast(S)

FOR i:=1 TO 3 DO
 Sum += Receive()

FOR i:=11 TO 20 DO
 S += A[i]

Broadcast(S)

FOR i:=1 TO 3 DO
 Sum += Receive()

FOR i:=21 TO 30 DO
 S += A[i]

Broadcast(S)

FOR i:=1 TO 3 DO
 Sum += Receive()

A[1..10]memory: A[11..20]

A[21..30]

memory:

The Road Ahead: SMP
Clusters?

The Road Ahead: Shared Memory MP Clusters?

CPU

memory

bus

CPU CPU CPU

memory

bus

CPU CPU CPU

memory

bus

CPU CPU CPU

memory

bus

CPU CPU

NOWs: Network of
Workstations

NOWs: Network of Workstations I NOWs II

Also known as a Workstation Farm.

NOWs are particularly good for embarrassingly parallel

programs. The animated movie Toy Story, for example, was
rendered on a network of SparcStations. Note that each frame
can be rendered independently of the other frames!

The advantages of NOWs are that they are cheap, readly
available, and provide a lot of free cycles during off peak
hours (when their regular users are asleep!).

The disadvantages are the slow network connections.

Measurements

Analysing Performance I

S Hardware speed in operations per second: MIPS
(millions of instructions per seconds) or MFLOPS
(millions of floating point operations per second).

p Number of processors.

F Number of operations executed by a program.

T The time in seconds to run a program.

U = F
ST

The utilization of the machine by a program.

Example: A program p1 runs in 10 seconds,
executing 108 instructions on a 10 MIPS machine.
It’s utilization is

U =
108

(10 · 106) × 10
= 1

This is an ideal (but unusual) situation.

Analysing Performance II

Sp(n) = T∗(n)
Tp(n) We need to solve a problem P of size n. The best

sequential program solving P executes in T ∗(n)
seconds. Our parallel algorithm running on p

processors takes Tp(n) seconds. Then Sp(n) is the
speedup. Example: T ∗(100) = 10, T10(100) = 1,
then

S10(100) =
T ∗(100)

Tp(100)
=

10

1
= 10

This is the best possible result, known as linear

speedup. In general, we’ll do worse than that.

Analysing Performance III

S ′
p(n) = T1(n)

Tp(n) If the optimal sequential time T ∗(n) is unknown,

we can instead measure the self-relative speedup.
This is defined by setting T ∗(n) to T1(n) (the time
to execute the parallel program on one processor).

Ep(n) =
Sp(n)

p
= T∗(n)

pTp(n) The efficiency of a parallel program is

the fraction of time that a typical processor is
usefully employed. Example: T ∗(100) = 10,
T5(100) = 3, p = 5:

E5(100) =
T ∗(100)

5T5(100)
=

10

5 × 3
= 67%

Amdahl’s Law

Let N be the number of processors, S the time spent on the
sequential part of the program, and P the time spent on the
parallel part of the program. Then the speedup SN is

SN =
Time without speedup

Time with speedup

=
S + P

S + P
N

Let 90% of the calculation be speeded up by a factor 100.
The remaining 10% cannot be speeded up. Let T be the total
time.

SN =
Time without speedup

Time with speedup

=
T

0.1T + 0.9
100T

=
1

0.109
< 10

Summary

Summary I

What does a supercomputer do that a workstation or a PC
doesn’t? It gets the job done quicker. Late answers are
wrong answers!

There are three popular parallel architectures: shared memory
multiprocessors (commodity microprocessors connected via a
bus to shared memory), distributed multiprocessors
(commodity microprocessors with local memory connected via
a fast switch), and parallel vector computers (vector
processors connected via a bus to shared memory).

