
CSc 553

Principles of Compilation

4 : Intermediate Code

Department of Computer Science

University of Arizona

collberg@gmail.com

Copyright c© 2011 Christian Collberg

Introduction

NIL

IF, Ident:a, <,

IntConst:1, THEN, Ident:b

:=, IntConst:2, END,...

Lexical
Analysis

Syntactic
Analysis

Semantic
Analysis

Optimiz−
ation

Machine
Code
Generat.

then else nextexpr

If−Stat

Ident

id:a type

Assign−Stat

des expr nextRightOp:<Left type

Binary

IntConst

val:1 type

Ident

id:b type
IntConst

val:2 type

Branch(Op:>=, Lab:L1)

Load IntConst(val:1)

GlobalVar(id:a)

Store

GlobalVar(id:b) IntConst(val:2)

name: T

high: 10

type

low:  2

ARRAY

Real

Boolean

Integer

then else nextexpr

If−StatType Next

id:T

Binary

RightOp:<Left

val:1

IntConst

id:a

Ident

Assign−Stat

des expr next

Ident

id:b

IntConst

val:2

ld

cmp

bge

set a, %l0

[%l0], %l0

%l0, 1

L1

L1:

set

set

st %l1, [%l0]

b, %l0

2, %l1

intermediate code
Generation of

TYPE  T =

ARRAY[2..10] OF REAL
...

...
IF a<1 THEN b:=2 END

NIL

...

NIL

Analysis
Synthesis

Symbol
TableNIL

...

TYPE, Ident:T, ARRAY, [,...

Intermediate Representations

Some compilers use the AST as the only intermediate
representation. Optimizations (code improvements) are
performed directly on the AST, and machine code is
generated directly from the AST.

The AST is OK for machine-independent optimizations, such
as inlining (replacing a procedure call with the called
procedure’s code).

The AST is a bit too high-level for machine code generation
and machine-dependent otpimizations.

For this reason, some compilers generate a lower level
(simpler, closer to machine code) representation from the
AST. This representation is used during code generation and
code optimization.



Intermediate Code I

Advantages of:

1 Fitting many front-ends to many back-ends,
2 Different development teams for front- and back-end,
3 Debugging is simplified,
4 Portable optimization.

Requirements:

1 Architecture independent,
2 Language independent,
3 Easy to generate,
4 Easy to optimize,
5 Easy to produce machine code from.

A representation which is both architecture and language
independent is known as an UNCOL, a Universal Compiler

Oriented Language.

Intermediate Code II

UNCOL is the holy grail of compiler design – many have
search for it, but no-one has found it. Problems:

1 Programming language semantics differ from one language to
another,

2 Machine architectures differ.

There are several different types of intermediate
representations:

1 Tree-Based.
2 Graph-Based.
3 Tuple-Based.
4 Linear representations.

All representations contain the same information. Some are
easier to generate, some are easy to generate simple machine
code from, some are easy to generate good code from.

Postfix Notation

Postfix Notation

Infix: b := (a ∗ 2) + (a ∗ 2)

*

assign

b

a 2 a 2

+

*

Postfix: b a 2 * a 2 * + :=

Postfix notation is a parenthesis free notation for arithmetic
expression. It is essentially a linearized representation of an
abstract syntax tree.

In postfix notation an operator appears after its operands.

Very simple to generate, very compact, easy to generate
straight-forward machine code from, difficult to generate
good machine code from.



Tree & DAG Representations

Tree & DAG Repr. I

Trees make good intermediate representations. We can
represent the program as a sequence of expression trees.
Each assignment, procedure call, or jump becomes one
individual tree in the forest.

Common Subexpression Ellimination (CSE): Even if the
same (sub-) expression appears more than once in a
procedure, we should only compute its value once, and save
the result for future reference.

One way of doing this is to build a graph representation,
rather than a tree. In the following slides we see how the
expression a ∗ 2 gets two subtrees in the tree representation
and one subtree in the DAG representation.

Tree & DAG Repr. II

b := (a ∗ 2) + (a ∗ 2)

*

assign

b

a 2 a 2

+

*

Linearized Tree:
Nr Op Arg1 Arg2

1 ident a

2 int 2
3 mul 1 2
4 ident a

5 int 2
6 mul 4 5
7 add 3 6
8 ident b

9 assign 8 7

Tree & DAG Repr. III

b := (a ∗ 2) + (a ∗ 2)

*

assign

b +

a 2
Linearized DAG:

Nr Op Arg1 Arg2

1 ident a

2 int 2
3 mul 1 2
4 add 3 3
5 ident b

6 assign 5 4



Tuple Codes

Three-Address Code I

Another common representation is three-address code. It is
akin to assembly code, but uses an infinite number of
temporaries (registers) to store the results of operations.

There are three common realizations of three-address code:
quadruples, triples and indirect triples.

Types of 3-Addr Statements:

x := y op z Binary arithmetic or logical operation. Example:
Mul, And.

x := op y Unary arithmetic, conversion, or logical operation.
Example: Abs, UnaryMinus, Float.

x := y Copy statement.

goto L Unconditional jump.

Three-Address Code II

if x relop y goto L Conditional jump. relop is one of <,>,<=,
etc. If x relop y evaluates to True, then jump to
label L. Otherwise continue with the next tuple.

param X ; call P, n Make X the next parameter; make a
procedure call to P with n parameters.

x := y[i] Indexed assignment. Set x to the value in the

location i memory units beyond y.

x := ADDR(y) Address assignment. Set x to the address of y.

x := IND(y) Indirect assignment. Set x to the value stored at

the address in y.

IND(x) := y Indirect assignment. Set the memory location

pointed to by x to the value held by y.

Three-Address Code III

Many three-address statements (particularly those for binary
arithmetic) consist of one operator and three addresses
(identifiers or temporaries):

b := (a ∗ 2) + (a ∗ 2)

t1 := a mul 2
t2 := a mul 2
t3 := t1 add t2

b := t3

There are several ways of implementing three-address
statements. They differ in the amount of space they require,
how closely tied they are to the symbol table, and how easily
they can be manipulated.

During optimization we may want to move the three-address
statements around.



Three-Address Code IV

Quadruples:

Quadruples can be implemented as an array of records with
four fields. One field is the operator.

The remaining three fields can be pointers to the symbol table
nodes for the identifiers. In this case, literals and temporaries
must be inserted into the symbol table.

b := (a ∗ 2) + (a ∗ 2)

Nr Res Op Arg1 Arg2

(1) t1 mul a 2

(2) t2 mul a 2

(3) t3 add t1 t2

(4) t1 assign b t3

Three-Address Code V

Triples:

Triples are similar to quadruples, but save some space.

Instead of each three-address statement having an explicit
result field, we let the statement itself represent the result.

We don’t have to insert temporaries into the symbol table.

b := (a ∗ 2) + (a ∗ 2)

Nr Op Arg1 Arg2

(1) mul a 2

(2) mul a 2

(3) add (1) (2)

(4) assign b (3)

Three-Address Code VI

Indirect Triples:
One problem with triples (“The Trouble With Triples?”a) is that they
around. We may want to do this during optimization.

We can fix this by adding a level of indirection, an array of pointers to

aThis is a joke. It refers to the famous Star Trek episode “The Trouble With Tribbles.”

b := (a ∗ 2) + (a ∗ 2)

Abs Real

(1) (10)
(2) (11)
(3) (12)
(4) (13)

Nr Op Arg1 Arg2

(11) mul a 2

(12) mul a 2

(13) add (11) (12)

(14) := b (13)

Intermediate Code Generation



Interm. Code Generation

Decorated AST

Intermediate

Code Generator

Code (expression
trees, tuples,
DAGs...)

Intermediate

Machine Code

Generator

set L, %o0

ld  [%o0], %l1

Lexing,

Parsing,

Semantic

Analysis

Machine Code

After semantic analysis we traverse the AST and emit the
correct intermediate code.

The next slide shows how an expression tree is generated from
an AST. The float can easily be inserted since all types are
known in the AST.

Generating Expression Trees

To the

Assign Type=

Des Expr

Id="R"Name

Type=Real RopLop Op="+"

Binary Type=Real

Name Id="C"

Type=Real
RopLop Op="*"

Binary Type=Int

Name Id="J"

Type=Int

IntConst

Type=Int

Value=13

Load

Integer

value = 13

Store

Plus

Mult

Float

Load

Var Level=0

Addr=0xA

Var Level=0

Addr=0x10

Var Level=1

Intermediate

Code 

Expression

Tree

machine
code
gener−
ator

Decorated

AST

Tree−Walk
Transformer

Generating Quadruples I

Each AST node in an expression sub-tree is given an attribute
⇑Place:SymbolT which represents the name of the identifier
or temporary in which the value of the subtree will be
computed.

Tree-Walk Transformer:

PROCEDURE Program (n: Node);

Decl(n.DeclSeq); Stat(n.StatSeq);

END;

PROCEDURE Decl (n: Node);

IF n.Kind = ProcDecl THEN

Decl(n.Locals); Decl(n.Next);

Stat(n.StatSeq);

ENDIF

END;

Generating Quadruples II

NewTemp generates a new temporary var.

PROCEDURE Stat (n: Node);

IF n.Kind = Assign THEN

Expr(n.Des); Expr(n.Expr);

Emit(n.Des.Place ’:=’ n.Expr.Place);

Stat(n.Next);

ENDIF

END;

PROCEDURE Expr (n: Node);

IF n.Kind = Add THEN

Expr(n.LOP); Expr(n.ROP);

n.Place := NewTemp();

Emit(n.Place ’:=’

n.LOP.Place ’+’ n.ROP.Place);

ELSIF n.Kind = VarRef THEN

n.Place := n.Symbol;



Generating Quadruples III

Symbol Table Entry

Des Expr

Assign

Id="R"Name

Place=

Name Id="C"

Place=

Name Id="J"

Place=

IntConst

Value=13

Place=

RopLop Op="+"

Binary Place=

RopLop Op="*"

Binary Place=

R := T2

T2 := C + T1

T1 := J * 13

(R,VAR,INT)

(T1,TEMP,INT)

(T2,TEMP,INT)

(C,VAR,INT)

(J,VAR,INT) (13,CONST,INT)

Quadruples

Attribute Grammar Notation

Attribute Grammar Notation I

The book uses a convenient way to describe attribute
computations, called an attribute grammar notation.

We simply combine the abstract syntax notation with the
attribute computations that have to be performed at the
corresponding AST nodes:

A ::= B C
{ C.d := B.c + 1;

A.b := A.a + B.c; }

Note that it is not directly obvious from this notation which
attributes are synthesized and inherited, and in which order
the nodes should be visited. We have to figure this out
ourselves!

Attribute Grammar Notation II

Now we can rewrite our tuple generator using the new
notation:

Assign ::= Des:Expr Expr:Expr
{ Emit(n.Des.Place ’:=’ n.Expr.Place);
}

Add ::= LOP:Expr ROP:Expr
{ n.Place := NewTemp();

Emit(n.Place ’:=’
n.LOP.Place ’+’ n.ROP.Place);

}

Name ::= Ident
{ n.Place := n.Symbol; }



Building DAGs

Building DAGs I

From an expression/expression tree such as this one:

a ∗ (b + c)

4

1

2 3

5

+

a

*

cb

We might generate this machine code (for some fictious
architecture):

LOAD b, r0

LOAD c, r1

ADD r0, r1, r2

LOAD a, r3

MUL r2, r3, r4

Can we generate better code from a DAG than a tree?

Building DAGs II

Example Expression:

[(a + b) ∗ c + {(a + b) + e} ∗ (e + f )] ∗ [(a + b) ∗ c]

Tree Representation:

+
+

a b

c
*

+
e f+

a b

+
e

*
+

a b

c
*

*

DAG Representation:

e

*

+

+
a b

c
* *

+ +
f

Building DAGs III

Generating machine code from the tree yields 21 instructions.

Code from DAG

LOAD a, r0 ; a

LOAD b, r1 ; b

ADD r0, r1, r2 ; a + b

LOAD c, r0 ; c

MUL r0, r2, r3 ; (a + b) ∗ c

LOAD a, r0 ; a

LOAD b, r1 ; b

ADD r0, r1, r2 ; a + b

LOAD e, r0 ; e

ADD r2, r0, r4 ; (a + b) + e

LOAD f, r0 ; f

LOAD e, r1 ; e

ADD r0, r1, r0 ; f + e

MUL r4, r0, r4 ; {(a + b) + e} ∗ (e + f )



Building DAGs IV

Generating machine code from the DAG yields only 12
instructions.

Code from DAG

LOAD a, r0 ; a

LOAD b, r1 ; b

ADD r0, r1, r2 ; a + b

LOAD c, r0 ; c

MUL r0, r2, r3 ; (a + b) ∗ c

LOAD e, r4 ; e

ADD r4, r2, r1 ; (a + b) + e

LOAD f, r0 ; f

ADD r0, r4, r0 ; f + e

MUL r1, r0, r0

ADD r0, r3, r0

MUL r0, r3, r0

Building DAGs V

Repeatedly add subtrees to build DAG. Only add subtrees not
already in DAG. Store subtrees in a hash table. This is the
value-number algorithm.

For every insertion of a subtree, check if
(X OP Y ) ∈ DAG. X Y

OP

PROCEDURE InsertNode (

OP : Operator; L, R : Node) : Node;

BEGIN

V := hashfunc (OP, L, R);

N := HashTab.Lookup (V , OP, L, R);

IF N = NullNode THEN

N := NewNode (OP, L, R);

HashTab.Insert (V , N);

END;

RETURN N;

END InsertNode;

Building DAGs VI – Example

3

4

6

2

5

A+B

A

B

+

A B

1

3

4

6

2

5

A+B

A

B

(A+B)*C

C

+

A B

C

*

1

3

4

6

2

5

+

A B

C

*
+

(A+B)*C+(A+B)

A+B

A

B

(A+B)*C

C

1

Summary



Readings and References

Read the Tiger book:

Translation to Intermediate Code Chapter 7.

Or, read the Dragon book:

Postfix notation 33
DAGs & Value Number Alg. 290–293
Intermediate Languages 463–468, 470–473
Assignment Statements 478–481

Summary I

We use an intermediate representation of the program in order
to isolate the back-end from the front-end.

A high-level intermediate form makes the compiler
retargetable (easily changed to generate code for another
machine). It also makes code-generation difficult.

A low-level intermediate form make code-generation easy, but
our compiler becomes more closely tied to a particular
architecture.

Homework

Homework I

Translate the program below into quadruples, triples, and a
’sequence of expression trees.’

PROGRAM P;

VAR X : INTEGER;

VAR Y : REAL;

BEGIN

X := 1;

Y := 5.5;

WHILE X < 10 DO

Y := Y + FLOAT(X);

X := X + 1;

IF Y > 10 THEN

Y := Y * 2.2;

ENDIF;

ENDDO;

END.



Homework II

Consider the following expression:

((x ∗ 4) + y) ∗ (y + (4 ∗ x)) + (z ∗ (4 ∗ x))

1 Show how the value-number algorithm builds a DAG from the
expression (remember that + and ∗ are commutative).

2 Show the resulting DAG when stored in an array.

3 Translate the expression to postfix form.

4 Translate the expression to indirect triple form.


