CSc 553

Principles of Compilation

Introduction
8 : Heap Allocation

Department of Computer Science
University of Arizona

Interface to Dynamic allocation

@ The run-time system linked in with the generated code should

contain routines for allocation /deallocation of dynamic C, C++: charx malloc(size) and free(charx) are
memory. standard library routines.
Pascal, C, C++, Modula-2 Explicit deallocation of dynamic Pascal: new(p.oz:nte'r var) and dispose (pointer var)
memory only. l.e. the programmer is required to keep are builtin standard procedures.
track of all allocated memory and when it’s safe to Java: new(class name) is a standard function.
free it. LISP: cons creates new cells:
Eiffel Implicit deallocation only. Dynamic memory which is tead Tail
no longer used is recycled by the garbage collector. A (cons *
Ada Implicit or explicit deallocation (implementation °
' 3
defined). v
Modula-3 Implicit and explicit deallocation (programmer’s) b (abg © "™

choice).

Explicit Deallocation

DEFINITION MODULE Complex;
TYPE T;
PROCEDURE Create (Re, Im : REAL) : T;
PROCEDURE Add (A, B : T) : T;

END Complex.

IMPLEMENTATION MODULE Complex;

TYPE T = POINTER TO RECORD Re, Im : REAL; END

PROCEDURE Create (Re, Im : REAL) : T;
BEGIN
NEW(x); xT.Re := Re; xT.Im := Im; RETURN x;
END Create;
PROCEDURE Add (A, B : T) : T;
BEGIN
NEW(x); xT.Re := --+; x7.Im := ---; RETURN x;
END Add;
END Complex;

Explicit Deallocation

@ Pascal's new/dispose, Modula-2's ALLOCATE/DEALLOCATE,
C's malloc/free, C++'s new/delete, Ada's
new/unchecked deallocation (some implementations).

@ Problem 1: Dangling references: p=malloc(); g=p;

free(p);.
@ Problem 2: Memory leaks, Heap fragmentation.
Heap:
4 A “ t
8 ha
small cell 16 7
free list: 55 ol

L l
rreeiise =l

MODULE Use;
IMPORT Complex;
VAR a,b,c,d : Complex.T;
BEGIN
a := Complex.Create(1.0, 2.4);
b Complex.Create(3.4, 4.0);
c := Complex.Create(9.4, 6.6);
d := Complex.Add(a,Complex.Add(b,c));
END Use.

@ Complex.Add(b, c) creates a new object which can never be
reclaimed.

seoxT

Fragmentation

VAR a, b, ¢, d : POINTER TO ARRAY [1..1000] OF BYTE;
VAR x : POINTER TO ARRAY [1..2000] OF BYTE;
BEGIN

NEW(a); NEW(b); NEW(c); NEW(d); Implicit Deallocation

DISPOSE(a); DISPOSE(c); NEW(x);

a b c d x

S ey ot
1000 100 1060
Free tist: 1]

@ Without compaction the last allocation will fail, even though
enough memory is available.

Implicit Deallocation Implicit Deallocation. . .

@ LISP, Prolog — Equal-sized cells; No changes to old cells.
@ Eiffel, Modula-3 — Different-sized cells; Frequent changes to

old cells. @ Fragmentation — Compact the heap as a part of the GC, or
@ When do we GC? only when the GC fails to return a large enough block.
Stop-and-copy Perform a GC whenever we run out of @ Algorithms: Reference counts, Mark/ssweep, Copying,
heapspace (Modula-3). Generational.

Real-time/Incremental Perform a partial GC for each pointer
assignment or new (Eiffel, Modula-3).
Concurrent Run the GC in a separate process.

Algorithm: Reference Counts Algorithm: Reference Counts. ..

. . . . @ Every object records the number of pointers pointing to it.
@ An extra field is kept in each object containing a count of the

number of pointers which point to the object. @ When a pointer changes, the corresponding object’s reference

count has to be updated.

©

Each time a pointer is made to point to an object, that

- . e GC: i j i . Ci i
object’s count has to be incremented. GC: reclaim objects with a zero count. Circular structures will

not be reclaimed.

®

Similarly, every time a pointer no longer points to an object,

. Live cells
that object’s count has to be decremented. B .

@ When we run out of dynamic memory we scan through the Q obal "
heap and put objects with a zero reference count back on the Vari abl es e
free-list. a b a

@ Maintaining the reference count is costly. Also, circular p

structures (circular linked lists, for example) will not be

collected. Garbage (will Garbage (won't
be recl ai ned) be recl ai ned)

Algorithm: Reference Counts. .. Readings and References

NEW(p) is impl ed as:

malloc(p); pf.rc := 0;
@ Read Scott, pp. 383-385

pl.next:=q is implemented as:
@ Apple's Tiger book, pp. 257282

z := pl.next; @ Topics in advanced language implementation, Chapter 4,

if z # nil then Andrew Appel, Garbage Collection. Chapter 5, David L.
z].rc--; if z].rc = 0 then reclaim z] endif; Detlefs, Concurrent Garbage Collection for C++. ISBN

endif; 0-262-12151-4.

pl.next := q;

@ Aho, Hopcroft, Ullman. Data Structures and Algorithms,

LTCHH;
af.re Chapter 12, Memory Management.

@ This code sequence has to be inserted by the compiler for
every pointer assignment in the program. This is very
expensive.

Readings and References. . .

@ Nandakumar Sankaran, A Bibliography on Garbage Collection
and Related Topics, ACM SIGPLAN Notices, Volume 29, No.
9, Sep 1994.

@ J. Cohen. Garbage Collection of Linked Data Structures,
Computing Surveys, Vol. 13, No. 3, pp. 677-678.

