
CSc 553 — Principles of Compilation

10 : Garbage Collection — Copying Collection

Christian Collberg

Department of Computer Science

University of Arizona

collberg@gmail.com

Copyright c© 2011 Christian Collberg

February 8, 2011

1

Introduction

2

Copying Collection

• Even if most of the heapspace is garbage, a mark and sweep algorithm will touch the entire heap. In
such cases it would be better if the algorithm only touched the live objects.

• Copying collection is such an algorithm. The basic idea is:

1. The heap is divided into two spaces, the from-space and the to-space.

2. We start out by allocating objects in the from-space.

3. When from-space is full, all live objects are copied from from-space to to-space.

4. We then continue allocating in to-space until it fills up, and a new GC starts.

3

Copying Collection. . .

• An important side-effect of copying collection is that we get automatic compaction – after a collection
to-space consists of the live objects in a contiguous piece of memory, followed by the free space.

• This sounds really easy, but · · · :

– We have to traverse the object graph (just like in mark and sweep), and so we need to decide the
order in which this should be done, depth-first or breadth-first.

– DFS requires a stack (but we can, of course, use pointer reversal just as with mark and sweep),
and BFS a queue. We will see later that encoding a queue is very simple, and hence most
implementations of copying collection make use of BFS.

1



4

Copying Collection. . .

• This sounds really easy, but · · ·

– An object in from-space will generally have several objects pointing to it. So, when an object is
moved from from-space to to-space we have to make sure that we change the pointers to point to
the new copy.

5

Copying Collection. . .

• Mark-and-sweep touches the entire heap, even if most of it is garbage. Copying collection only touches
live cells.

• Copying collection divides the heap in two parts: from-space and to-space.

• to-space is automatically compacted.

• How to traverse object graph: BFS or DFS?

• How to update pointers to moved objects?

Algorithm:

1. Start allocating in from-space.

2. When from-space is full, copy live objects to to-space.

3. Now allocate in to-space.

6

Copying Collection. . . Traversing the Object Graph:

• Most implementations use BFS.

• Use the to-space as the queue.

Updating (Forwarding) Pointers:

• When an object is moved its new address is stored first in the old copy.

Example:

GC

roots:

from−space to−space

roots:

from−space to−space

2



7

Copying Collection Algorithm

1. scan := next := ADDR(to-space)

• [scan · · · next] hold the BFS queue.

• Objects above scan point into to-space. Objects between scan and next point into from-space.

2. Copy objects pointed to by the root pointers to to-space.

3. Update the root pointers to point to to-space.

4. Put each object’s new address first in the original.

5. Repeat (recursively) with all the pointers in the new to-space.

(a) Update scan to point past the last processed node.

(b) Update next to point past the last copied node.

Continue while scan < next.

8

Copying Collection Example. . . (A)

scan

rootsroots
A

C

D

E

F

from−space

B

from−space
to−space

A

B

C

D

E

F

D

B

next

9

Copying Collection Example. . . (B)

F

roots to−space

D

B

next

scan

from−space

A

B

C

D

E

F

roots to−space

D

B

scan

next

E

from−space

A

B

C

D

E

3



10

Cost of Garbage Collection

• The size of the heap is H , the amount of reachable memory is R, the amount of memory reclaimed is
H − R.

H
e
a
p

Heapsize=H

Reachable=R Reclaimed=H − R

amortized GC cost =
time spent in GC

amount of garbage collected

=
time spent in GC

H − R

11

Cost of GC — Copying Collection

H
e
a
p

H/2 − RR
Reachable= Reclaimed=

Heapsize=H

from:H/2 to:H/2

• The breadth first search phase touches all live nodes. Hence, it takes time c3R, for some constant c3.
c3 ≈ 10?

• The heap is divided into a from-space and a to-space, so each collection reclaims H
2
− R words.

GC cost =
c3R

H
2
− R

≈
10R

H
2
− R

12

Cost of GC — Copying Collection. . .

e
a
p

H

copy

R H/2 − R

from:H/2 to:H/2

• If there are few live objects (H ≫ R) the GC cost is low.

• If H = 4R, we get

GC cost =
c3R

4R
2

− R
≈ 10.

This is expensive: 4 times as much memory as reachable data, 10 instruction GC cost per object
allocated.

4



13

Readings and References

• Read Scott, pp. 387–388.

5


