
CSc 553 — Principles of Compilation

11 : Garbage Collection — Generational Collection

Christian Collberg

Department of Computer Science

University of Arizona

collberg@gmail.com

Copyright c© 2011 Christian Collberg

February 8, 2011

1

Generational Collection

• Works best for functional and logic languages (LISP, Prolog, ML, . . . ) because

1. they rarely modify allocated cells

2. newly created objects only point to older objects ((CONS A B) creates a new two-pointer cell with
pointers to old objects),

3. new cells are shorter lived than older cells, and old objects are unlikely to die anytime soon.

2

Generational Collection. . .

• Generational Collection therefore

1. divides the heap into generations, G0 is the youngest, Gn the oldest.

2. allocates new objects in G0.

3. GC’s only newer generations.

• We have to keep track of back pointers (from old generations to new).

3

Generational Collection. . . Functional Language:

(cons ’a ’(b c))

m
t1: x ← new ’(b c);

t2: y ← new ’a;

t3: return new cons(x, y)

1



• A new object (created at time t3) points to older objects.

Object Oriented Language:

t1: T ← new Table(0);

t2: x ← new Integer(5);

t3: T.insert(x);

• A new object (created at time t2) is inserted into an older object, which then points to the news object.

4

Generational Collection. . .

Remembered Set: Roots:

G0G1G2

5

Generational Collection – After GC(G0)

Remembered Set: Roots:

G1G2 G′

0

6

Generational Collection. . .

• Since old objects (in Gn · · ·G1) are rarely changed (to point to new objects) they are unlikely to point
into G0.

• Apply the GC only to the youngest generation (G0), since it is most likely to contain a lot of garbage.

• Use the stack and globals as roots.

• There might be some back pointers, pointing from an older generation into G0. Maintain a special set
of such pointers, and use them as roots.

2



• Occasionally GC older (G1 · · ·Gk) generations.

• Use either mark-and-sweep or copying collection to GC G0.

7

Remembering Back Pointers Remembered List
After each pointer update x.f := · · · , the compiler adds code to insert x in a list of updated memory
locations:

x↑.f := · · ·
⇓

x↑.f := · · ·;
insert(UpdatedList, x);

8

Remembering Back Pointers Remembered Set
As above, but set a bit in the updated object so that it is inserted only once in the list:

x↑.f := · · ·
⇓

x↑.f := · · · ;
IF NOT x↑.inserted THEN

insert(UpdatedList, x);

x.↑inserted := TRUE;

ENDIF

9

Remembering Back Pointers. . . Card marking

• Divide the heap into “cards” of size 2k.

• Keep an array dirty of bits, indexed by card number.

• After a pointer update x↑.f := · · · , set the dirty bit for card c that x is on:

x↑.f := · · ·
⇓

x↑.f := · · · ;
dirty[x div 2k] := TRUE;

10

Remembering Back Pointers. . . Page marking I

• Similar to Card marking, but let the cards be virtual memory pages.

• When x is updated the VM system automatically sets the dirty bit of the page that x is on.

• We don’t have to insert any extra code!

3



11

Remembering Back Pointers. . . Page marking II

• The OS may not let us read the VM system’s dirty bits.

• Instead, we write-protect the page x is on.

• On an update x↑.f := · · · a protection fault is generated. We catch this fault and set a dirty bit
manually.

• We don’t have to insert any extra code!

12

Cost of Garbage Collection

• The size of the heap is H , the amount of reachable memory is R, the amount of memory reclaimed is
H −R.

H
e
a
p

Heapsize=H

Reachable=R Reclaimed=H − R

amortized GC cost =
time spent in GC

amount of garbage collected

=
time spent in GC

H −R

13

Cost of GC — Generational Collection

H
e
a
p

tofrom

Heapsize=H

Reachable=R Reclaimed

G0G2 G1

• Assume the youngest generation (G0) has 10% live data, i.e. H = 10R.

• Assume we’re using copying collection for G0.

GC costG0
=

c3R

H

2
−R

=
c3R

10R

2
−R

≈
10R

4R
= 2.5

4



14

Cost of GC — Generational Collection. . .

H
e
a
p

tofrom

Heapsize=H

Reachable=R Reclaimed

G0G2 G1

GC costG0
=

c3R

H

2
−R

=
c3R

10R

2
−R

≈
10R

4R
= 2.5

• If R ≈ 100 kilobytes in G0, then H ≈ 1 megabyte.

• In other words, we’ve wasted about 900 kilobytes, to get 2.5 instruction/word GC cost (for G0).

15

Readings and References

• Read Scott, pp. 388–389.

5


