CSc 553 — Principles of Compilation

13: Garbage Collection — Uncooperative Languages

Christian Collberg Department of Computer Science University of Arizona collberg@gmail.com

Copyright © 2011 Christian Collberg

February 8, 2011

1

Introduction

$\mathbf{2}$

Uncooperative Languages There is some information which is necessary in order to perform automatic memory management:

- 1. We need to find the roots of the object graph, i.e. the pointers from the stack, registers, or global variables which point to objects on the heap.
- 2. We need to know the size, the beginning, and end of each object.
- 3. For each object we need to find which of its fields are pointers.
- Unfortunately, some languages have been designed so that it is impossible to determine this information.
- C and C++ are the two most popular such languages.

3

Uncooperative Languages...

- C and C++ don't separate safe and unsafe features (such as address and bit manipulation) which are sometimes needed in systems programming.
- Modula-3 has similar unsafe features as C and C++ but they can be encapsulated into unsafe modules, which don't mess up the safety of the main (safe) part of the program.

4

Uncooperative Languages...

• Most GC algorithms assume that there is always a pointer to the beginning of every object. Depending on the code generator, that may or may not be true.

```
f(g,s) char (*g)(); char * s;
{ int i; int l = strlen(s);
  for (i = 0; i < l; i++)
     s[i] = (*g)(s[i]); }
```

There may be no pointer to s[0].

$\mathbf{5}$

Uncooperative Languages... We need to know

- 1. the roots of the object graph.
- 2. the size, the beginning, and end of each object.
- 3. which object fields are pointers.

_____ Finding Roots: _____

```
Foo* f = new foo; // f = 0x53f36
f = NULL; // f* is garbage
int i = 0x53f36; // points to f...
```

6

Uncooperative Languages... Finding the beginning:

```
char* str = new char[26];
strcpy(str, "This is a string");
str += 10;  // Only ptr to str...
```

_____ Finding pointers: _____

union Unsure {char* str; int i} x;

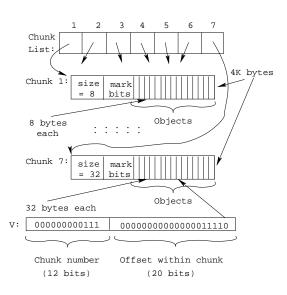
7

Conservative GC

• Works OK for uncooperative languages (C, C++) where we can't distinguish between pointers and integers. Sometimes fails to reclaim all garbage.

_____ Main Ideas: ____

• Chunks are numbered. A pointer consists of 12 bits of chunk number (C) + 20 bits of offset within the chunk (O).


[•] Allocate memory in chunks. Each chunk holds a collection of objects of a certain size (i.e. it's easy to find the start of objects).

8

Conservative GC. . .

- To check whether a value V = (C, O) is a pointer to some object we check that
 - 1. Heap-bottom $\leq V \leq$ Heap-top,
 - 2. FirstChunk# $\leq C \leq$ LastChunk#
 - 3. the offset O is a multiple of the object size in chunk C.

9

 $Conservative \ GC\dots$

10

Readings and References

• Read Scott, pp. 389.