
CSc 553 — Principles of Compilation

16 : OO Languages — Polymorphism

Christian Collberg

Department of Computer Science

University of Arizona

collberg@gmail.com

Copyright c© 2011 Christian Collberg

January 29, 2011

1

Runtime Type Checking

2

Inclusion Polymorphism Consider the last two lines of the example in the following slide:

• In L1, S points to a Shape object, but it could just as well have pointed to an object of any one of
Shape’s subtypes, Square and Circle.

• If, for example, S had been a Circle, the assignment C := S would have been perfectly OK. In L2,
however, S is a Shape and the assignment C := S is illegal (a Shape isn’t a Circle).

3

Inclusion Polymorphism

VAR S : Shape; Q : Square; C : Circle;

BEGIN

Q := NEW (Square);

C := NEW (Circle);

S := Q; (* OK *)

S := C; (* OK *)

Q := C; (* Compile-time Error *)

L1: S := NEW (Shape);

L2: C := S; (* Run-time Error *)

END;

1

4

Typechecking Rules

TYPE T = CLASS · · · END;

U = T CLASS · · · END;

S = T CLASS · · · END;

VAR t,r : T; u : U; s : S;

• A variable of type T may refer to an object of T or one of T’s subtypes.

Assignment Compile-time Run-Time
t := r; Legal Legal
t := u; Legal Legal
u := t; Legal Check
s := u; Illegal

5

Run-time Type Checking Modula-3 Type-test Primitives:

ISTYPE(object, T) Is object’s type a subtype of T?

NARROW(object, T) If object’s type is not a subtype of T, then issue a run-time type error. Otherwise
return object, typecast to T.

TYPECASE Expr OF Perform different actions depending on the runtime type of Expr.

• The assignment s := t is compiled into s := NARROW(t, TYPE(s)).

6

Run-time Type Checking. . .

• The Modula-3 runtime-system has three functions that are used to implement typetests, casts, and the
TYPECASE statement

• NARROW takes a template and an object as parameter. It checks that the type of the object is a
subtype of the type of the template. If it is not, a run-time error message is generated. Otherwise,
NARROW returns the object itself.

1. ISTYPE(S,T : Template) : BOOLEAN;

2. NARROW(Object, Template) : Object;

3. TYPECODE(Object) : CARDINAL;

7

Run-time Checks

• Casts are turned into calls to NARROW, when necessary:

2

VAR S : Shape; VAR C : Circle;

BEGIN

S := NEW (Shape); C := S;

END;

⇓
VAR S : Shape; VAR C : Circle;

BEGIN

S := malloc (SIZE(Shape));

C := NARROW(S, Circle$Template);

END;

8

Implementing ISTYPE

• We follow the object’s template pointer, and immediately (through the templates’ parent pointers)
gain access to it’s place in the inheritance hierarchy.

PROCEDURE ISTYPE (S, T : TemplatePtr) : BOOLEAN;

BEGIN

LOOP

IF S = T THEN RETURN TRUE; ENDIF;

S := S^.parent;

IF S = ROOT THEN RETURN FALSE; ENDIF;

ENDLOOP

END ISTYPE;

9

Implementing NARROW

• NARROW uses ISTYPE to check if S is a subtype of T. Of so, S is returned. If not, an exception
is thrown.

PROCEDURE NARROW(T:TemplatePtr; S:Object):Object;

BEGIN

IF ISTYPE(S^.$template, T) THEN

RETURN S (* OK *)

ELSE WRITE "Type error"; HALT;

ENDIF;

END NARROW;

3

10

Run-time Checks — Example

TYPE T = CLASS [· · ·];
S = T CLASS [· · ·];
U = T CLASS [· · ·];
V = U CLASS [· · ·];
X = S CLASS [· · ·];
Y = U CLASS [· · ·];
Z = U CLASS [· · ·];

VAR x : X;

T

S

X Z

U

V Y

11

Run-time Checks — Example. . .

ISTYPE(x, T)ROOT

parent:

.....

T$Template

ISTYPE(,)

template

instance
vari−
ables

x:

parent:

.....
parent:

.....

parent:

.....

parent:

.....

parent:

.....

parent:

.....

S$Template U$Template

X$Template V$Template Y$Template Z$Template

12

Run-time Checks – An O(1) Algorithm

• The time for a type test is proportional to the depth of the inheritance hierarchy. Two algorithms do
type tests in constant time:

1. Norman Cohen, “Type-Extension Type Tests can be Performed in Constant Time.”

2. Paul F.Dietz, “Maintaining Order in a Linked List”.

The second is more efficient, but requires the entire type hierarchy to be known. This is a problem in
separately compiled languages.

• SRC Modula-3 uses Dietz’ method and builds type hierarchies of separately compiled modules at
link-time.

• These algorithms only work for single inheritance.

13

Run-time Checks – Alg. II (b) In the Compiler (or Linker):

1. Build the inheritance tree.

2. Perform a preorder traversal and assign preorder numbers to each node.

4

3. Similarly, assign postorder numbers to each node.

4. Store T’s pre- and postorder numbers in T’s template.

In the Runtime System:

PROCEDURE ISTYPE (

S, T : TemplatePtr) : BOOLEAN;

BEGIN

RETURN (T.pre ≤ S.pre) AND (T.post ≥ S.post);

END ISTYPE;

14

Run-time Checks – Alg. II (c)

TYPE

T = CLASS [· · ·];
S = T CLASS [· · ·];
U = T CLASS [· · ·];
V = U CLASS [· · ·];
X = S CLASS [· · ·];
Y = U CLASS [· · ·];
Z = U CLASS [· · ·];

Z

pre=1 T

Upre=4 post=6S post=2pre=2

X
pre=3

post=1

V
pre=5
post=3

Y
pre=6

post=4

pre=7

post=5

post=7

√
ISTYPE(Y,U) U.pre≤Y.pre U.post≥Y.post

ISTYPE(Z,S) S.pre≤Z.pre S.post 6≥Z.post√
ISTYPE(Z,T) T.pre≤Z.pre T.post≥Z.post

15

Run-time Checks – Alg. II (d)

• Consider U:

1. U’s pre-number is ≤ all it’s children’s pre numbers.

2. U’s post-number is ≥ all it’s children’s post numbers.

[U.pre,U.post] “covers” (in the sense that U.pre ≤ pre and U.post ≥ post) the [pre,post] of all
it’s children.

• S is not a subtype of U since [U.pre,U.post] does not cover [S.pre,S.post] (S.post ≤ U.post but
S.pre 6≥ U.pre).

Z

pre=1 T

Upre=4 post=6S post=2pre=2

X
pre=3

post=1

V
pre=5
post=3

Y
pre=6

post=4

pre=7

post=5

post=7

16

OO Languages

5

17

Inlining Methods

• Consider a method invocation m.P (). The actual procedure called will depend on the run-time type
of m.

• If more than one method can be invoked at a particular call site, we have to inline all possible methods.
The appropriate code is selected code by branching on the type of m.

• To improve on method inlining we would like to find out when a call m.P() can call exactly one method.

18

Inlining Methods. . .

T

m.type=class1

m.type=class2

code for

class2::P

code for

class1::P

call m.P ()
T F

F

Inline⇒

19

Inlining Methods — Example

TYPE T = CLASS [f : T][

METHOD M (); BEGIN END M;

];

TYPE S = CLASS EXTENDS T [

][

METHOD N (); BEGIN END N;

METHOD M (); BEGIN END M;

];

VAR x : T; y : S;

BEGIN

x.M();

y.M();

END;

20

Type Hierarchy Analysis

• For each type T and method M in T , find the set ST,M of method overrides of M in the inheritance
hierarchy tree rooted in T .

• If x is of type T , ST,M contains the methods that can be called by x.M().

• We can improve on type hierarchy analysis by using a variant of the Reaching Definitions data flow
analysis.

6

21

Type Hierarchy Analysis. . .

TYPE T = CLASS [][

METHOD M (); BEGIN END M;];

TYPE S = CLASS EXTENDS T [][

METHOD N (); BEGIN END N;

METHOD M (); BEGIN END M;];

VAR x : T; y : S;

BEGIN

x.M(); ⇐ ST,M = {T.M, S.M}
y.M(); ⇐ SS,M = {S.M}

END;

22

Summary

23

Readings and References

• Read Scott: 529–551,554–561,564–573

• The time for a type test is proportional to the depth of the inheritance hierarchy. Many algorithms do
type tests in constant time:

1. Norman Cohen, “Type-Extension Type Tests can be Performed in Constant Time.”

2. Paul F.Dietz, “Maintaining Order in a Linked List”.

24

Confused Student Email

What happens when both a class and its subclass have an instance variable with the same name?

• The subclass gets both variables. You can get at both of them, directly or by casting. Here’s an
example in Java:

class C1 {int a;}

class C2 extends C1 {double a;}

class C {

static public void main(String[] arg) {

C1 x = new C1(); C2 y = new C2();

x.a = 5; y.a = 5.5;

((C1)y).a = 5;

}

}

7

