CSc 553 — Principles of Compilation

16: OO Languages — Polymorphism

Christian Collberg Department of Computer Science University of Arizona collberg@gmail.com

Copyright \bigodot 2011 Christian Collberg

January 29, 2011

1

Runtime Type Checking

$\mathbf{2}$

Inclusion Polymorphism Consider the last two lines of the example in the following slide:

- In L_1 , S points to a Shape object, but it could just as well have pointed to an object of any one of Shape's subtypes, Square and Circle.
- If, for example, S had been a Circle, the assignment C := S would have been perfectly OK. In L₂, however, S is a Shape and the assignment C := S is illegal (a Shape isn't a Circle).

3

Inclusion Polymorphism

```
VAR S : Shape; Q : Square; C : Circle;
BEGIN
  Q := NEW (Square);
  C := NEW (Circle);
  S := Q; (* OK *)
  S := C; (* OK *)
  Q := C; (* Compile-time Error *)
  L<sub>1</sub>: S := NEW (Shape);
  L<sub>2</sub>: C := S; (* Run-time Error *)
END;
```

Typechecking Rules

```
\begin{array}{rcl} \mathbf{TYPE} & \mathtt{T} = & \mathbf{CLASS} & \cdots & \mathbf{END}; \\ & \mathtt{U} = \mathtt{T} & \mathbf{CLASS} & \cdots & \mathbf{END}; \\ & \mathtt{S} = \mathtt{T} & \mathbf{CLASS} & \cdots & \mathbf{END}; \\ \mathbf{VAR} & \mathtt{t,r} : & \mathtt{T}; \ \mathtt{u} : & \mathtt{U}; \ \mathtt{s} : & \mathtt{S}; \end{array}
```

• A variable of type T may refer to an object of T or one of T's subtypes.

Assignment	Compile-time	Run-Time
t := r;	Legal	Legal
t := u;	Legal	Legal
u := t;	Legal	Check
s := u;	Illegal	

 $\mathbf{5}$

Run-time Type Checking ______ Modula-3 Type-test Primitives: _____

ISTYPE(object, T) Is object's type a subtype of T?

NARROW(object, T) If object's type is *not* a subtype of T, then issue a run-time type error. Otherwise return object, typecast to T.

TYPECASE Expr OF Perform different actions depending on the runtime type of Expr.

• The assignment s := t is compiled into s := NARROW(t, TYPE(s)).

6

Run-time Type Checking...

- The Modula-3 runtime-system has three functions that are used to implement typetests, casts, and the **TYPECASE** statement
- NARROW takes a template and an object as parameter. It checks that the type of the object is a subtype of the type of the template. If it is not, a run-time error message is generated. Otherwise, NARROW returns the object itself.
- 1. ISTYPE(S,T : Template) : BOOLEAN;
- 2. NARROW(Object, Template) : Object;
- 3. TYPECODE(Object) : CARDINAL;

$\mathbf{7}$

Run-time Checks

• Casts are turned into calls to **NARROW**, when necessary:

```
VAR S : Shape; VAR C : Circle;
BEGIN
S := NEW (Shape); C := S;
END;
VAR S : Shape; VAR C : Circle;
BEGIN
S := malloc (SIZE(Shape));
C := NARROW(S, Circle$Template);
END;
```

Implementing **ISTYPE**

• We follow the object's template pointer, and immediately (through the templates' parent pointers) gain access to it's place in the inheritance hierarchy.

```
PROCEDURE ISTYPE (S, T : TemplatePtr) : BOOLEAN;
BEGIN
LOOP
IF S = T THEN RETURN TRUE; ENDIF;
S := S^.parent;
IF S = ROOT THEN RETURN FALSE; ENDIF;
ENDLOOP
END ISTYPE;
```

9

Implementing NARROW

• NARROW uses ISTYPE to check if S is a subtype of T. Of so, S is returned. If not, an exception is thrown.

```
PROCEDURE NARROW(T:TemplatePtr; S:Object):Object;
BEGIN
IF ISTYPE(S<sup>^</sup>.$template, T) THEN
RETURN S (* OK *)
ELSE WRITE "Type error"; HALT;
ENDIF;
END NARROW;
```


11

 ${\rm Run-time\ Checks-Example.}\,.$

12

Run-time Checks – An O(1) Algorithm

- The time for a type test is proportional to the depth of the inheritance hierarchy. Two algorithms do type tests in constant time:
 - 1. Norman Cohen, "Type-Extension Type Tests can be Performed in Constant Time."
 - 2. Paul F.Dietz, "Maintaining Order in a Linked List".

The second is more efficient, but requires the entire type hierarchy to be known. This is a problem in separately compiled languages.

- SRC Modula-3 uses Dietz' method and builds type hierarchies of separately compiled modules at link-time.
- These algorithms only work for single inheritance.

13

Run-time Checks – Alg. II (b) _____ In the Compiler (or Linker): _____

- 1. Build the inheritance tree.
- 2. Perform a preorder traversal and assign preorder numbers to each node.

- 3. Similarly, assign postorder numbers to each node.
- 4. Store T's pre- and postorder numbers in T's template.

___ In the Runtime System: ____

PROCEDURE ISTYPE (
 S, T : TemplatePtr) : BOOLEAN;
BEGIN
 RETURN (T.pre ≤ S.pre) AND (T.post ≥ S.post);
END ISTYPE;

 $\mathbf{14}$

TYPE		pre=1 T post=7		
Run-time Checks – Alg. II (c)	T = CI	LASS $[\cdots];$	T	
	S = T C	LASS $[\cdots];$	pre=2 S post=2, pre=4 U post=6	
	U = T C	LASS $[\cdots];$	· · · · · · · · · · · · · · · · · · ·	
	V = U C	LASS $[\cdots];$	X /V /Y Z	Ì`,
	X = S C	LASS $[\cdots];$	post=1 post=3 post=4 po	:7 =5
	Y = U C	LASS $[\cdots];$	A set have have here the	1
	Z = U C	LASS $[\cdots];$		
$\sqrt{1}$	STYPE(Y,U)	U.pre≤Y.pre	U.post≥Y.post	
I	STYPE(Z,S)	$\texttt{S.pre} \leq \texttt{Z.pre}$	S.post≱Z.post	
$\sqrt{1}$	STYPE(Z,T)	$T.pre \leq Z.pre$	$\texttt{T.post}{\geq}\texttt{Z.post}$	

15

Run-time Checks – Alg. II (d)

- Consider U:
 - 1. U's pre-number is \leq all it's children's pre numbers.
 - 2. U's post-number is \geq all it's children's post numbers.

[U.pre,U.post] "covers" (in the sense that U.pre \leq pre and U.post \geq post) the [pre,post] of all it's children.

S is not a subtype of U since [U.pre,U.post] does not cover [S.pre,S.post] (S.post ≤ U.post but S.pre ≥ U.pre).

16

Inlining Methods

- Consider a method invocation m.P(). The actual procedure called will depend on the run-time type of m.
- If more than one method can be invoked at a particular call site, we have to inline all possible methods. The appropriate code is selected code by branching on the type of m.
- To improve on method inlining we would like to find out when a call m.P() can call exactly one method.

 $\mathbf{18}$

Inlining Methods...

19

```
Inlining Methods — Example
TYPE T = CLASS [f : T][
    METHOD M (); BEGIN END M;
    ];
TYPE S = CLASS EXTENDS T [
    ][
    METHOD N (); BEGIN END N;
    METHOD M (); BEGIN END M;
    ];
VAR x : T; y : S;
BEGIN
    x.M();
    y.M();
END;
```

$\mathbf{20}$

Type Hierarchy Analysis

- For each type T and method M in T, find the set $S_{T,M}$ of method overrides of M in the inheritance hierarchy tree rooted in T.
- If x is of type T, $S_{T,M}$ contains the methods that can be called by x.M().
- We can improve on type hierarchy analysis by using a variant of the Reaching Definitions data flow analysis.

$\mathbf{21}$

Type Hierarchy Analysis...

 $\mathbf{22}$

Summary

$\mathbf{23}$

Readings and References

- Read Scott: 529–551,554–561,564–573
- The time for a type test is proportional to the depth of the inheritance hierarchy. Many algorithms do type tests in constant time:
 - 1. Norman Cohen, "Type-Extension Type Tests can be Performed in Constant Time."
 - 2. Paul F.Dietz, "Maintaining Order in a Linked List".

$\mathbf{24}$

Confused Student Email

What happens when both a class and its subclass have an instance variable with the same name?

• The subclass gets both variables. You can get at both of them, directly or by casting. Here's an example in Java:

```
class C1 {int a;}
class C2 extends C1 {double a;}
class C {
   static public void main(String[] arg) {
    C1 x = new C1(); C2 y = new C2();
    x.a = 5; y.a = 5.5;
    ((C1)y).a = 5;
   }
}
```