
CSc 553 — Principles of Compilation

17 : OO Languages — Multiple Inheritance

Christian Collberg

Department of Computer Science

University of Arizona

collberg@gmail.com

Copyright c© 2011 Christian Collberg

January 29, 2011

1

Multiple Inheritance

2

Multiple Inheritance

• In some languages (C++, Eiffel) a class can have more than one superclass.

class Person { Name : STRING; }
class Student extends Person {

Advisor : Teacher;}
class Teacher extends Person {

Salary : INTEGER;

method Rich () : BOOLEAN;

return Salary > 50000;}
class Tutor extends Student, Teacher {

Boss : Teacher;}

3

Multiple Inheritance. . .

class Teacher extends Person {
Salary : INTEGER;

method Rich () : BOOLEAN;

return Salary > 50000;}

Rich() should translate into:

PROCEDURE Rich (

SELF : Teacher) : BOOLEAN;

RETURN SELF^.Salary > 50000;

1



4

Multiple Inheritance. . .

• We’d like to be able to call m.Rich() for any Teacher object, including a Tutor:

PROCEDURE Rich (

SELF : Teacher) : BOOLEAN;

RETURN SELF^.Salary > 50000;

Teacher Knuth = new Teacher;

Tutor Lucy = new Tutor;

boolean k = Knuth.Rich()

boolean l = Lucy.Rich()

• In order for this to work, the Salary field in a Tutor record must be at the same offset as the Salary

field in the Teacher record.

5

Multiple Inheritance. . .

• But, if our record layout uses simple concatenation of parent classes (like with single inheritance), we
get:

From Teacher

Person

0:Name:String

0:Name:String

4:Salary:INT

Teacher

0:Name:String

4:Advisor:Teacher

Student

Tutor

8:Salary:INT

0:Name:String

4:Advisor:Teacher

From Student

• The Salary field in a Teacher record is at offset 4, but the Salary field in the Tutor record is at offset
8.

6

Multiple Inheritance. . .

• An inefficient implementation might do:

PROCEDURE Rich (SELF : Teacher) : BOOLEAN;

RETURN IF ISTYPE(SELF,Teacher)

THEN (SELF-4)^>50000 ELSE (SELF+8)^>50000;

• Or we could insert extra space to align the fields properly:

2



4:Wasted:4−bytes

Person

0:Name:String

0:Name:String

4:Advisor:Teacher

8:Salary:INT

Tutor

0:Name:String

4:Advisor:Teacher

Student

0:Name:String

8:Salary:INT

Teacher

7

Multiple Inheritance. . .

• With multi-directional layouts, we place variables at both positive and negative offsets:

−4:Salary:INT

4:Advisor:Teacher

Student

−4:Salary:INT

0:Name:String

4:Advisor:Teacher

Tutor

Person

0:Name:String

Teacher

0:Name:String

0:Name:String

8

Multiple Inheritance. . .

−4:Salary:INT

4:Advisor:Teacher

Student

−4:Salary:INT

0:Name:String

4:Advisor:Teacher

Tutor

Person

0:Name:String

Teacher

0:Name:String

0:Name:String

• The Salary-field is always at the same offset, regardless of what type of object:

PROCEDURE Rich (

SELF : Teacher) : BOOLEAN;

RETURN (SELF-4)^>50000;

9

Multiple Inheritance. . .

• How does the language deal with the same field inherited through more than one path? A Tutor

inherits Name twice, once from Student and once from Teacher:

3



class Person { Name : STRING; }
class Student extends Person {· · · }
class Teacher extends Person {· · · }
class Tutor extends Student,Teacher {· · · }

• Should Tutor have one or two copies of Name?

• In Trellis/Owl you always get just one copy of Name.

• In C++ you can choose. If you declare a superclass virtual, Tutor only gets one copy of Name, otherwise
two.

10

Multiple Inheritance. . .

• How does the language deal with different fields/methods with the same type/signature inherited from
different classes?

class Student {Name : STRING; · · · }
class Teacher {Name : STRING; · · · }
class Tutor extends Student,Teacher {· · · }
Tutor T = new Tutor();

T.Name = "Knuth"; /* Which Name? */

11

Multiple Inheritance. . .

class Student {Name : STRING; · · · }
class Teacher {Name : STRING; · · · }
class Tutor extends Student,Teacher {· · · }
Tutor T = new Tutor();

T.Name = "Knuth"; /* Which Name? */

• In Eiffel, the programmer has to rename fields until there are no more conflicts, using a rename

clause:

class Tutor extends Student,

Teacher rename Name⇒TName {· · · }

• In C++, conflicts are resolved when the field/method is used:

Tutor T = new Tutor();

Teacher::T.Name = "Knuth";

12

Readings and References

• Read Scott: 146-CD-157-CD.

• For information on constructing layouts for multiple inheritance, see

– William Pugh and Grant Weddell: “Two-directional record layout for multiple inheritance.”

4


