CSc 553 — Principles of Compilation

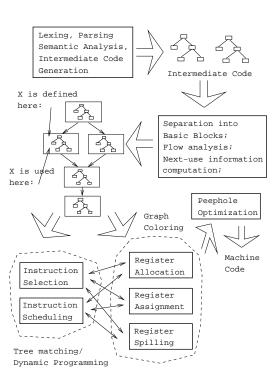
23: Register Allocation

Christian Collberg Department of Computer Science University of Arizona collberg@gmail.com

Copyright © 2011 Christian Collberg

March 22, 2011

Introduction



3

Register Allocation by Graph Coloring

 $\mathbf{2}$

1

4 Register Allocation

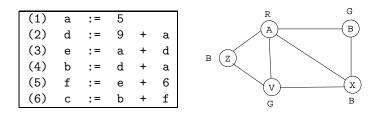
- Register allocation is difficult:
 - 1. Machines have weird instruction sets, register pairs (two consecutive registers that are the source or destination in an instruction), register classes (address, integer, index, floating),...
 - 2. Optimal solutions to the register allocation problem is NP-complete.
- Most compilers use complicated ad hoc heuristic register allocation algorithms. It would be helpful if we had a good model for register allocation the way we have finite automata for lexical analysis, attribute grammars for semantic analysis, etc.
- We can model register allocation using undirected graphs.

5 Graph Coloring

- Model register allocation as a graph coloring problem. Each color represents an available register.
- Create a graph node for each variable. If variables a and b are *active* (live) at the same point, they cannot be assigned to the same register. Add an edge (a, b) to the graph.
- Look for a k-coloring (k = # registers) of the graph. Assign colors so that neighboring nodes have different colors.
- If we cannot k-color our graph, we:
 - 1. Select a node (variable) n whose value we're willing to spill,
 - 2. Insert spill code,
 - 3. Delete node n and its edges,
 - 4. Look for a k-coloring.

6 The Interference Graph I

- The interference graph (an undirected graph where the nodes are the variables of the program) models which variables cannot be allocated to the same register.
- Connect **a** and **b** if **a** is live at a point where **b** is defined.

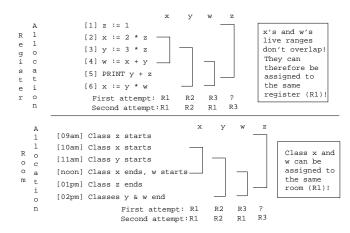


7 The Interference Graph II

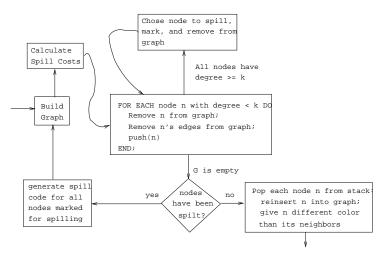
- Register allocation is a bit like room scheduling.
- Room scheduling:
 - 1. We have a set of rooms (registers).

- 2. We have a set of classes (variables) to fit into the rooms.
- 3. Two classes that meet at the same time cannot be allocated to the same room.
- The difference is that in room scheduling there can be no **spilling**; no-one gets to have their lecture in the park!
- A variable's **live range**
 - 1. starts at the point in the code where the variable receives a value, and
 - 2. ends where that value is used for the last time.

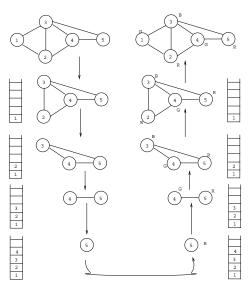
8 The Interference Graph III



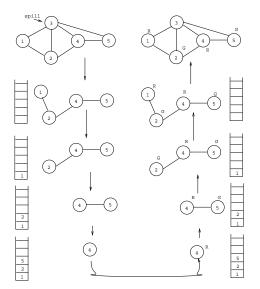
9 Chaitin's Coloring Algorithm



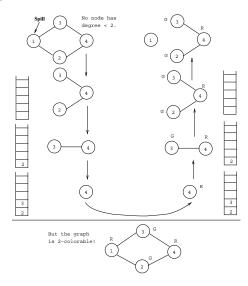
10 Coloring Example I (a) -k = 3



11 Coloring Example I (b) -k = 2



12 Coloring Example II -k = 2



13

Precoloring

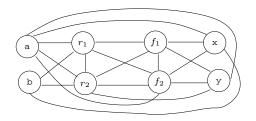
14 Precolored Nodes I

- Sometimes we will want to express that a particular variable **must** reside in a particular register. For example, if variable **a** is being passed as argument 1 to procedure **P** on the SPARC, we'd want to express that **a** must reside in register %00, and nowhere else.
- Similarly, sometimes we want to express that a particular variable **must not** reside in a particular register. For example, a floating point variable should not be in an integer register.
- Such variables are *precolored*.
- We augment the interference graph with nodes for each available register, and an edge between variable *a* and register *r* if *a* cannot be allocated to *r*.

15 Precolored Nodes II

```
VAR x, y : INTEGER;
VAR a, b : REAL;
x := 100;
a := 1.0;
b := a + 5.2;
y := x + 50;
P(y,a);
```

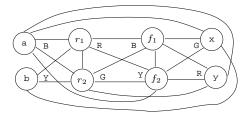
- We have two integer registers r_1 and r_2 , and two FP registers f_1 and f_2 .
- Procedure actuals are passed in registers: y in r_1 and a in f_1 .



16 Precolored Nodes III

VAR x, y : INTEGER; VAR a, b : REAL; x := 100; a := 1.0; b := a + 5.2; y := x + 50; P(y,a);

- We color y and r_1 red (R), x and r_2 green (G).
- We color a and f_1 blue (B), b and f_2 yellow (Y).

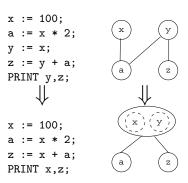


17

Register Coalescing

18 Register Coalescing

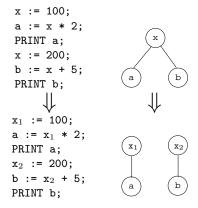
- Register coalescing is a kind of copy propagation that removes register copies.
- Search the intermediate code for copies $S_j \leftarrow S_i$ such that S_j and S_i don't interfere with each other.
- Modify any instruction $S_i \leftarrow \cdots$ to $S_j \leftarrow \cdots$ and merge the interference graph nodes for S_j and S_i .



Splitting Live Ranges

20 Splitting Live Ranges

- If we use the same variable for several unique tasks (e.g. i for all for-loops) the interference graph is overly constrained.
- Instead we let each graph node represent a unique use of a variable.



 $\mathbf{21}$

Building the Interference Graph

22 Building the Interference Graph I

- We start by performing a liveness analysis.
- in[B] Variables live on entrance to B.
- out [B] Variables live on exit from B.
- def[B] Variables assigned values in B before the variable is used.
- use[B] Variables whose values are used before being assigned to.

_ Data-flow Equations: _

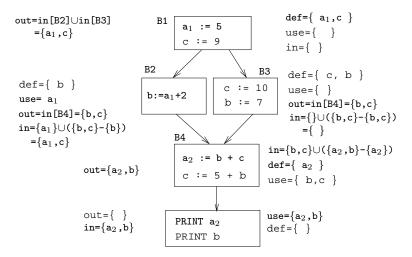
$$\begin{array}{lll} \mathtt{in}[\mathtt{B}] &=& \mathtt{use}[\mathtt{B}] \cup (\mathtt{out}[\mathtt{B}] - \mathtt{def}[\mathtt{B}]) \\ \mathtt{out}[\mathtt{B}] &=& \bigcup_{\mathtt{succs} \ S \ \mathtt{of} \ B} \mathtt{in}[\mathtt{S}] \end{array}$$

23 Building the Interference Graph II

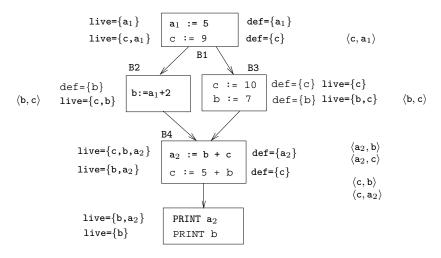
• Then we build the graph. For efficiency, we store it both as an adjacency matrix, and as adjacency lists.

```
FOR all basic blocks b in the program DO
live := out[b];
FOR all instructions I \in b, in reverse order DO
FOR all d \in def(I) DO
FOR all l \in live \cup def(I) DO
add the interference graph edge \langle l, d \rangle;
live := use(I) \cup (live - def(I));
```

24 Building the Interference Graph III



25 Building the Interference Graph IV



26 Building the Interference Graph V

• Here's the finished interference graph:

	\mathtt{a}_1	\mathtt{a}_2	b	С
\mathtt{a}_1				\checkmark
\mathtt{a}_2				
b				
с			\checkmark	

 $\mathbf{27}$

Summary

28 Readings and References

- Read the Tiger Book, Chapter 11, Register Allocation.
- The Dragon book: 513–521, 528–546, 554–559.
- Preston Briggs' thesis: Register Allocation via Coloring, http://cs-tr.cs.rice.edu:80/Dienst/Repository/2.0/Bo ncstrl.rice_cs/TR92-183/postscript.
- Steven Muchnick, Advanced Compiler Design and Implementation, Chapter 16, pp. 481–525.

29 Summary

- Graph coloring can be used to model register allocation. Each variable becomes a node in the graph. If two variables can't reside in the same register, we add en edge between them.
- The coloring algorithm assigns colors so that no neighboring nodes receive the same color.
- Optimal coloring is NP-complete (at least for **global** register allocation), so we need a heuristic algorithm that produces a good approximation.

30

Homework

 $\mathbf{31}$

Register Allocation by Graph Coloring

32 Homework III – Graph Coloring

• Construct the interference graph for the basic block below, and show the coloring produced by Chaitin's algorithm when two and three registers are available. Spill costs are X=3,Y=1,Z=2,V=2.

X := 5; Y := X + 3; Z := X + 5; V := Y + 6; X := X + Y; X := V + Z;

33 Homework IV – Graph Coloring

• Construct the flow-graph and the interference graph for the procedure body below, and show the global coloring produced by Chaitin's algorithm when two and three registers are available. Spill costs are X=1,Y=2,Z=3,W=1,V=2.

```
BEGIN
```

```
X := ...; Z := ...;

IF e_1 THEN Z := ...;

ELSE Y := ...;

ENDIF;

... := X; ... := Y;

W := ...; V := ...;

IF e_2 THEN ... := W; ... := Z;

ELSE ... := V;

ENDIF;

... := V + W;

END
```

34 Exam Problem I(a) (415.430 '95)

• Consider the following basic block:

X := 5; A := X + 5; B := X + 3; V := A + B; A := X + 5; Z := V + A; PRINT Z, V, A;

1. Construct the register interference graph for the block.

2. How many colors are necessary to color the graph optimally without register spills?

35 Exam Problem I(b) (415.430 '95)

X := 5; A := X + 5; B := X + 3; V := A + B; A := X + 5; Z := V + A; PRINT Z, V, A;

3. Show the graph after it has been colored with Chaitin's algorithm using 2 colors (Red and Blue). The spill-costs are: A=1, Z=2, B=3, V=2, X=4.

36 Exam Problem II/a (415.730 '96)

Consider the following basic block:

A := 5; F := A + 1; E := F + 5; B := F * A; PRINT B + E + A; D := E + 5; PRINT E; C := D + B; PRINT E + C;

1. Construct the register interference graph for the block.

37 Exam Problem II/b (415.730 '96)

- 2. How many colors are necessary to color the graph optimally without register spills?
- 3. Show such an optimal coloring!

4. Show the graph after it has been colored with Chaitin's algorithm using 2 colors (Red and Blue). The spill-costs are: C=1, D=2, E=3, B=A=4, F=5.

