
CSc 553 — Principles of Compilation

23 : Register Allocation

Christian Collberg

Department of Computer Science

University of Arizona

collberg@gmail.com

Copyright c© 2011 Christian Collberg

March 22, 2011

1

Introduction

2

Tree matching/

Dynamic Programming

Graph

Coloring

Register

Allocation

Register

Assignment

Register

Spilling

Lexing, Parsing

Intermediate Code

Generation

Semantic Analysis,

Intermediate Code

Separation into

Basic Blocks;

Flow analysis;

Next−use information

computation;

Instruction

Selection

Instruction

Scheduling

Peephole

Optimization

Machine

Code

X is defined

here:

X is used

here:

3

Register Allocation by Graph Coloring

1

4 Register Allocation

• Register allocation is difficult:

1. Machines have weird instruction sets, register pairs (two consecutive registers that are the source
or destination in an instruction), register classes (address, integer, index, floating),...

2. Optimal solutions to the register allocation problem is NP-complete.

• Most compilers use complicated ad hoc heuristic register allocation algorithms. It would be helpful
if we had a good model for register allocation the way we have finite automata for lexical analysis,
attribute grammars for semantic analysis, etc.

• We can model register allocation using undirected graphs.

5 Graph Coloring

• Model register allocation as a graph coloring problem. Each color represents an available register.

• Create a graph node for each variable. If variables a and b are active (live) at the same point, they
cannot be assigned to the same register. Add an edge (a, b) to the graph.

• Look for a k-coloring (k =# registers) of the graph. Assign colors so that neighboring nodes have
different colors.

• If we cannot k-color our graph, we:

1. Select a node (variable) n whose value we’re willing to spill,

2. Insert spill code,

3. Delete node n and its edges,

4. Look for a k-coloring.

6 The Interference Graph I

• The interference graph (an undirected graph where the nodes are the variables of the program) models
which variables cannot be allocated to the same register.

• Connect a and b if a is live at a point where b is defined.

(1) a := 5

(2) d := 9 + a

(3) e := a + d

(4) b := d + a

(5) f := e + 6

(6) c := b + f

B

X

A B

V

Z

G

BG

R

7 The Interference Graph II

• Register allocation is a bit like room scheduling.

• Room scheduling:

1. We have a set of rooms (registers).

2

2. We have a set of classes (variables) to fit into the rooms.

3. Two classes that meet at the same time cannot be allocated to the same room.

• The difference is that in room scheduling there can be no spilling; no-one gets to have their lecture
in the park!

• A variable’s live range

1. starts at the point in the code where the variable receives a value, and

2. ends where that value is used for the last time.

8 The Interference Graph III

assigned to

y w z

First attempt: R2R1 R3 ?

Second attempt: R2R1 R1 R3

A
l
l
o
c
a
t
i
o
n

R
e
g
i
s
t
e
r

A
l
l
o
c
a
t
i
o
n

R
o
o
m

x y w z

[11am] Class y starts

[01pm] Class z ends

[02pm] Classes y & w end

[09am] Class z starts

[10am] Class x starts

[noon] Class x ends, w starts

First attempt: R2R1 R3 ?

Second attempt: R2R1 R1 R3

x’s and w’s
live ranges
don’t overlap!
They can
therefore be
assigned to
the same
register (R1)!

[2] x := 2 * z

[3] y := 3 * z

[4] w := x + y

[5] PRINT y + z

[6] x := y * w

[1] z := 1

Class x and
w can be

the same
room (R1)!

x

9 Chaitin’s Coloring Algorithm

no

Spill Costs

Chose node to spill,

mark, and remove from

graph

spilt?

have been

nodes

Build

Graph

generate spill

code for all

for spilling

nodes marked

G is empty

END;

Remove n from graph;

Remove n’s edges from graph;

 push(n)

FOR EACH node n with degree < k DO

All nodes have

degree >= k

Pop each node n from stack:

give n different color

than its neighbors

reinsert n into graph;
yes

Calculate

3

10 Coloring Example I (a) – k = 3

B

3

2

4 5

3

2

4 5

3

4 5

4 5

1

1

2

2

1

3

2

1

3

5

1

3

2

4 5

1

1

2

2

1

3

2

1

3

4

3

2

4 5

3

4 5

4 5

5
4

R

G R

G

R

B

R

G

R

B

G

R

G R
1

11 Coloring Example I (b) – k = 2

R

3

2

4 51

3

2

4 5

2

1

1

5

2

1

2

1

1

5

2

1

4

2

4 5

1

2

4 5

4 5

4

2

4 5

1

2

4 5

4 5

spill

R

R

R

R

R

G

G

G

G

G

G

G

R

1

4

12 Coloring Example II – k = 2

G

3

2

4

3

2

41

G

G

R

No node has

degree < 2.

2

2

3

3 4

4

3

2

4

R

G

G

3 4

RG

4
R

2

2

3

But the graph

is 2−colorable!

3

2

41

Spill

1 4

3

2

RR

G

13

Precoloring

14 Precolored Nodes I

• Sometimes we will want to express that a particular variable must reside in a particular register. For
example, if variable a is being passed as argument 1 to procedure P on the SPARC, we’d want to
express that a must reside in register %o0, and nowhere else.

• Similarly, sometimes we want to express that a particular variable must not reside in a particular
register. For example, a floating point variable should not be in an integer register.

• Such variables are precolored.

• We augment the interference graph with nodes for each available register, and an edge between variable
a and register r if a cannot be allocated to r.

15 Precolored Nodes II

VAR x, y : INTEGER;

VAR a, b : REAL;

x := 100;

a := 1.0;

b := a + 5.2;

y := x + 50;

P(y,a);

• We have two integer registers r1 and r2, and two FP registers f1 and f2.

• Procedure actuals are passed in registers: y in r1 and a in f1.

5

b

a

y

x

r2
f2

f1r1

16 Precolored Nodes III

VAR x, y : INTEGER;

VAR a, b : REAL;

x := 100;

a := 1.0;

b := a + 5.2;

y := x + 50;

P(y,a);

• We color y and r1 red (R), x and r2 green (G).

• We color a and f1 blue (B), b and f2 yellow (Y).

R
b

a

y

x

Y G

R BB G

Y
r2

f2

f1r1

17

Register Coalescing

18 Register Coalescing

• Register coalescing is a kind of copy propagation that removes register copies.

• Search the intermediate code for copies Sj ← Si such that Sj and Si don’t interfere with each other.

• Modify any instruction Si ← · · · to Sj ← · · · and merge the interference graph nodes for Sj and Si.

x := 100;

a := x * 2;

y := x;

z := y + a;

PRINT y,z;
z

y

a

x

⇓ ⇓
x := 100;

a := x * 2;

z := x + a;

PRINT x,z;
a z

x y

6

19

Splitting Live Ranges

20 Splitting Live Ranges

• If we use the same variable for several unique tasks (e.g. i for all for-loops) the interference graph is
overly constrained.

• Instead we let each graph node represent a unique use of a variable.

x := 100;

a := x * 2;

PRINT a;

x := 200;

b := x + 5;

PRINT b;
ba

x

⇓ ⇓
x1 := 100;

a := x1 * 2;

PRINT a;

x2 := 200;

b := x2 + 5;

PRINT b;
a b

x2x1

21

Building the Interference Graph

22 Building the Interference Graph I

• We start by performing a liveness analysis.

• in[B] — Variables live on entrance to B.

• out[B] — Variables live on exit from B.

• def[B] — Variables assigned values in B before the variable is used.

• use[B] — Variables whose values are used before being assigned to.

Data-flow Equations:

in[B] = use[B] ∪ (out[B]− def[B])

out[B] =
⋃

succs S of B

in[S]

7

23 Building the Interference Graph II

• Then we build the graph. For efficiency, we store it both as an adjacency matrix, and as adjacency
lists.

FOR all basic blocks b in the program DO

live := out[b];

FOR all instructions I ∈ b, in reverse order DO

FOR all d ∈ def(I) DO

FOR all l ∈ live ∪ def(I) DO

add the interference graph edge 〈l, d〉;
live := use(I) ∪ (live− def(I));

24 Building the Interference Graph III

PRINT b

c := 5 + b

def={ }
out={ }

def={ b }

c := 9

b := 7

use={ b,c }

c := 10

in={ }

use={ }

def={ c, b }

use={ }

out={a2,b}

use={a2,b}PRINT a2
in={a2,b}

in={}∪({b,c}-{b,c})
={ }

out=in[B4]={b,c}

use= a1

in={a1}∪({b,c}-{b})

={a1,c}

B1
a1 := 5

B4

out=in[B2]∪in[B3]
={a1,c}

B2

b:=a1+2

B3

def={ a2 }

in={b,c}∪({a2,b}-{a2})
a2 := b + c

def={ a1,c }

out=in[B4]={b,c}

25 Building the Interference Graph IV

c := 5 + b

PRINT b

def={c}

c := 9

c := 10

b := 7 def={b}
def={b}

〈c, a2〉

live={b,a2}

live={b}

PRINT a2

live={b,a2}

live={c,b,a2}

live={c,b}

live={a1}

live={c,a1}

live={c}

live={b,c}

〈c, a1〉

〈b, c〉

〈a2, b〉
〈a2, c〉

〈c, b〉

〈b, c〉

B4

a2 := b + c

a1 := 5

B1

def={a1}

def={c}

def={c}

B3

def={a2}

b:=a1+2

B2

8

26 Building the Interference Graph V

• Here’s the finished interference graph:

a1 a2 b c

a1

√

a2

√ √

b
√ √

c
√ √ √

27

Summary

28 Readings and References

• Read the Tiger Book, Chapter 11, Register Allocation.

• The Dragon book: 513–521, 528–546, 554–559.

• Preston Briggs’ thesis: Register Allocation via Coloring, http://cs-tr.cs.rice.edu:80/Dienst/Repository/2.0/Body
ncstrl.rice cs/TR92-183/postscript.

• Steven Muchnick, Advanced Compiler Design and Implementation, Chapter 16, pp. 481–525.

29 Summary

• Graph coloring can be used to model register allocation. Each variable becomes a node in the graph.
If two variables can’t reside in the same register, we add en edge between them.

• The coloring algorithm assigns colors so that no neighboring nodes receive the same color.

• Optimal coloring is NP-complete (at least for global register allocation), so we need a heuristic algo-
rithm that produces a good approximation.

30

Homework

31

Register Allocation by Graph Coloring

32 Homework III – Graph Coloring

• Construct the interference graph for the basic block below, and show the coloring produced by Chaitin’s
algorithm when two and three registers are available. Spill costs are X=3,Y=1,Z=2,V=2.

9

X := 5;

Y := X + 3;

Z := X + 5;

V := Y + 6;

X := X + Y;

X := V + Z;

33 Homework IV – Graph Coloring

• Construct the flow-graph and the interference graph for the procedure body below, and show the global
coloring produced by Chaitin’s algorithm when two and three registers are available. Spill costs are
X=1,Y=2,Z=3,W=1,V=2.

BEGIN

X := · · ·; Z := · · · ;
IF e1 THEN Z := · · · ;
ELSE Y := · · · ;
ENDIF;

· · · := X; · · · := Y;

W := · · ·; V := · · · ;
IF e2 THEN · · · := W; · · · := Z;

ELSE · · · := V;

ENDIF;

· · · := V + W;

END

34 Exam Problem I(a) (415.430 ’95)

• Consider the following basic block:

X := 5;

A := X + 5;

B := X + 3;

V := A + B;

A := X + 5;

Z := V + A;

PRINT Z, V, A;

1. Construct the register interference graph for the block.

Z

X

A B

V

2. How many colors are necessary to color the graph optimally without register spills?

35 Exam Problem I(b) (415.430 ’95)

X := 5;

A := X + 5;

10

B := X + 3;

V := A + B;

A := X + 5;

Z := V + A;

PRINT Z, V, A;

3. Show the graph after it has been colored with Chaitin’s algorithm using 2 colors (Red and Blue). The
spill-costs are: A=1, Z=2, B=3, V=2, X=4.

Z

X

A B

V

36 Exam Problem II/a (415.730 ’96)

Consider the following basic block:

A := 5;

F := A + 1;

E := F + 5;

B := F * A;

PRINT B + E + A;

D := E + 5;

PRINT E;

C := D + B;

PRINT E + C;

1. Construct the register interference graph for the block.

E

B

A

F

C

D

37 Exam Problem II/b (415.730 ’96)

2. How many colors are necessary to color the graph optimally without register spills?

3. Show such an optimal coloring!

E

B

A

F

C

D

4. Show the graph after it has been colored with Chaitin’s algorithm using 2 colors (Red and Blue). The
spill-costs are: C=1, D=2, E=3, B=A=4, F=5.

11

E

B

A

F

C

D

12

