
CSc 553 — Principles of Compilation

24 : Instruction Scheduling I

Christian Collberg

Department of Computer Science

University of Arizona

collberg@gmail.com

Copyright c© 2011 Christian Collberg

March 24, 2011

1

Introduction

2

Peephole

Optimization

Register

Allocation

Register

Assignment

Register

Spilling

Instruction

Selection

Instruction

Scheduling

Or maybe
here!
(Yes!)

Maybe
here!

Separation into

Basic Blocks;

Flow analysis;

Next−use information

computation;

Lexing, Parsing

Intermediate Code

Generation

Semantic Analysis,

Intermediate Code

Instruction

Scheduling

Machine

Code

3 Instruction Scheduling

• Instruction scheduling is an inherently machine dependent task. Unlike other code improvements
which work with high- or medium-level intermediate representations, instruction scheduling works
explicitly with machine instructions.

1

• Instruction scheduling is often one of the last phases of code generation, performed after instruction
selection and register allocation.

• However, scheduling affects register allocation, so, ideally, we’d like to do instruction scheduling and
register allocation simultaneously.

• We’ll look at a scheduling algorithm that works directly on the generated machine code.

4

Instruction Pipelines

5 Instruction Pipelines

• Modern processors use instruction pipelines to speed up execution throughput (total amount of work
done in a given time).

• The idea is that the execution of several instruction are overlapped in time, much the same as when a
number of cars are assembled on an assembly line.

• The execution of instructions is broken down in several (4–7) individual pipeline stages.

• Pipelining doesn’t speed up the execution of individual instructions; rather, it increases the number of
simultaneously executing instruction and the rate at which they are started and completed.

6 Instruction Pipelines II

• A typical 5-stage pipeline:

(1) Fetch Fetch the instruction from memory (or instruction cache).

(2) Decode Decode the instruction and fetch the values of registers that the instruction will need.

(3) Execute Execute the instruction.

(4) Memory Access memory (for load and store instructions).

(5) Write Write the result of the instruction into the result register.

• Not all instructions make use of all the pipeline stages. There is often more than one execute stage.

• The MIPS R10000 has 7 stages: (1) Fetch, (2) Decode, (3) Issue Instruction and Read Registers, (4)
Exec 1, (5) Exec 2, (6) Exec 3, (7) Register Write.

2

7 MIPS R10000 Block Diagram

8 MIPS R10000 Die Photo

3

9 Pipeline Example I

(This instruction doesn’t start until cycle 11)

1 2 3 4 5 6 7

Fetch Decode Execute Memory Writelw $1,100($0)

Fetch

1 2 3 4 5 6 7

Fetch Decode Execute Memory Writelw $1,100($0)

Fetch Decode Execute Memory Writelw $2,200($0)

Fetch Decode Execute Memorylw $3,300($0) ...

lw $2,200($0)

lw $3,300($0) ...

...

With pipelining

Clock Cycle

Clock Cycle

Without pipelining

10 Pipeline Example II

lw $1,100($2)

1 2 3 4 5 6 7

Fetch Decode Execute Memory Write

Fetch
instr−
uction

Fetch
value of
reg $2

Compute
100+
Cont($2) Cont($2)]

Load
Mem[100+

Store
value in
reg $1

Fetch Decode Execute Memory Write

Fetch
instr−
uction

Fetch
value of
$4 and $5

Compute
$4 + $5

Store
result in
reg $3

add $3,$4,$5

Fetch
instr−
uction

Fetch
value of
$7 and $8

Compute
$7 − $8

Fetch Decode Execute Memorysub $6,$7,$8 ...

Clock Cycle

11 Pipeline Data Hazards I

mul $6,$7,55

1 2 3 4 5 6 7

Fetch Decode Execute Memory Write

Compute
address

Load
memory

Store in
$1

Fetch $2

lw $1,100($2)

Fetch Decode Execute Memory Write

Store in
$3

Compute
$1 + 44

Fetch $1

add $3,$1,44

Fetch Decode Execute Memory

Fetch
$1 & $3

Compute
$1 − $3

...sub $6,$1,$3

Fetch Decode Execute ...

Fetch $7

Fetch Decode

Fetch $9

div $8,$9,66 ...

Clock Cycle

12 Pipeline Data Hazards II

• The previous example shows one kind of problem we have with pipelines. Data hazards occur when
the result of one instruction isn’t ready in time for when that result is needed.

4

• Some processors will detect such situations and stall the pipeline until the value is ready. This is called
a harware/pipline interlock.

• Interlocks are expensive (extra control logic on the chip which takes up valuable chip real estate) so
some processors do away with them. Instead they rely on compilers and assemblers to insert NOPs when
needed.

13 Pipeline Data Hazards III

• Example: On a MIPS 2000, the value loaded by a ld instruction isn’t available to the immediately
following instruction. The processor doesn’t have hardware interlocks. If you give the following code
the the assembler

ld 100($4), $5

add $5, $5, 56

it will insert the necessary NOPs:

ld 100($4), $5

nop

add $5, $5, 56

• Even if the hardware does have interlocks, the compiler (or assembler) should pay attention to the
order in which instructions are scheduled. A well scheduled program may be upt o 50% faster than an
näıvely scheduled one.

14 Pipeline Data Hazards – Stalls

10

Fetch Bubble Bubble Bubble

Compute
address

Load
memory

Store in
$1

Fetch $2

Decode Execute Memory Write

Fetch

Store in
$3

Compute
$1 + 44

Fetch $1

Decode Execute Memory Write
Bubble Bubble Bubble

Fetch

Decode

Fetch
$1 & $3

2 3 4 5 6 7 8 9

• Some processors take care of data hazards themselves – the pipeline is stalled for a number of cycles
until the hazard is resolved. This is like inserting one or more bubbles (NOPs) in the pipeline.

5

15 Pipeline Data Hazards – Reordering

Store $1

Execute Memory Write

Fetch Decode Execute Memory Write

Fetch Decode Execute Memory

Fetch Bubble Bubble Bubble Decode

Fetch
$1 & $3

Store in
$3

Compute
$1 + 44

Fetch $1

Fetch Decode Execute Memory Write

Write

Fetch $7

Fetch $9

mul $6,$7,55

div $8,$9,66

add $3,$1,44

sub $6,$1,$3

3 4 5 6 7 8 9 10

lw $1,100($2)...

Compute Load

• The compiler can sometimes reorder instructions to avoid stalls.

16

Dependency Graphs

17 Dependency Graphs I

• An instruction scheduler reorders the instructions in an attempt at minimizing pipeline stalls.

• Obviously, we must not rearrange the code so that (when executed) it produces a different result from
before!

add $3,$2,44

li $2,66

Wrong!

⇒ li $2,66

add $3,$2,44

• We must therefore model all the dependencies between the instructions. We store this information in
a directed dependency graph. The nodes of the graph are the instructions we’re scheduling, and
there’s an edge a ⇒ b if instruction a must come before instruction b.

18 Dependency Graphs II

• There can be three kinds of dependencies between instructions:

flow dependence

• Also, true dependence or definition-use dependence.

(i) X := · · ·
.....

(j) · · · := X

• Instruction (i) generates (defines) a value which is used by instruction (j). We write (i) −→ (j).

6

19 Dependency Graphs III

anti-dependence

• Also, use-definition dependence.

(i) · · · := X

.....

(j) X := · · ·

• Instruction (i) uses a value overwritten by instruction (j). We write (i)−→+ (j).

20 Dependency Graphs IV

Output-dependence

• Also, definition-definition dependence.

(i) X := · · ·

(j) X := · · ·

• Instructions (i) and (j) both assign to (define) the same variable. We write (i)−→◦ (j).

• Regardless of the type of dependence, if instruction (j) depends on (i), then (i) has to be scheduled
before (j).

21 Dependency Graphs V

Flow Dependence Example

(1) ld 100($3), $2

..... ⇒ (1) −→ (5)
(5) add $5, $2, 55

• We can’t move (1) after (5). If we did, $2 would not have the correct value at (5). Hence there is a
flow dependence between (1) and (5).

Anti-Dependence Example

(2) add $5, $2, 55

..... ⇒ (2)−→+ (6)
(6) li $2, 33

• $2 gets a new value in (6). If we moved (2) after (6) $2 would have the wrong value in (6).

22 Dependency Graphs VI

Output-Dependence Example

(3) li $2, 33

(4) add $2, $5, 55 ⇒ (3)−→◦ (4)
(5) add $6, $2, 44

• If we switched (3) and (4), $2 would get the wrong value in (3).

7

23 Dependency Graphs VII

Complex Example

(1) lw $1, 100($3)

(2) lw $2, 200($3)

(3) add $3, $3, 22

(4) sub $1, $1, $3

(5) sw $3, 500($0)

(6) add $2, $2, 11

(7) mul $4, $3, 44

(8) mul $5, $4, $1

(9) div $5, $4, $3

24 Dependency Graphs VIII

(1) lw $1,100($3) (2) lw $2,200($3)

(8) add $5,$4,$1

(9) div $5,$4,$3

(3) add $3,$3,22 (5) sw $3,a

(7) mul $4,$3,44

(6) add $2,$2,11

(4) sub $1,$1,$3

• If instruction (b) depends on instruction (a) then (b) can be scheduled after a delay of one cycle.

• Real pipelines are more complex than this....

25

Topological Sorting

26 Topological Sorting I

• Problem: How to get dressed? I can’t put my clothes on in an arbitrary order: socks have to be put
on before shoes, shirt before tie, and so on.

• Each garment becomes a node in a DAG, and there’s an edge from u to v if I have to put on u before

v.

Topological Sorting:

“Order the nodes of the graph G in a sequence such that if x → y is an edge is G then x comes
before y in the ordering.”

Simple Algorithm:
Repeat until no more nodes:

8

• Pick a node n without predecessors.

• Print n.

• Delete n and all its outgoing edges.

27 Topological Sorting II

• In the folloing example, candidates are marked with a c.

• When there is more than one candidate to chose from, we pick one at random.

• There are often many possible topological orders to chose from. For example, since the watch node
has no dependencies at all, I can put it on at any time.

28 Topological Sorting III

print

tie

jacket

belt

pants

watch

undershorts socks

shirt

shoes

tie

jacket

belt

pants

watch

undershorts

shirt

shoes

socks

c

c c

c

socks

print

tie

jacket

belt

pants

watch

shirt

shoes

undershorts

tie

jacket

belt

watch

shirt

shoes

pants

Original Graph step 1

c

c

c

step 2

undershorts

c

c

step 3

c
pants

9

29 Topological Sorting IV

belt

tie

jacket

belt

watch

shirt

shoes

c

c

print step 4

c

shoes

tie

jacket

belt

shirt

watch

tie

jacket

belt

shirt

c

print step 6

shirt

tie

jacket

belt

c

c

print

watch

step 5

print

c
c

step 7

30 Topological Sorting V

jacket

undershorts shoessocks

watch shirt belt tie

pants

jacket

jacket

tie jacket

Complete Topological Order

print

c

step 8

tie

print

c

step 9

31

Algorithm

32

Last := {}; /* Last scheduled instr. */

REPEAT

Candidates := set of all nodes without

predecessors (incoming edges);

Colliding := set of all instructions that collide with

the instructions in Last; i.e. nodes n for which

there is an arch Last → n.

10

realCandidates:= Candidates-Colliding;

IF realCandidates 6= {} THEN

b := Use heuristic to pick the best

realCandidate to schedule;

Remove b and all its outgoing edges from the graph;

print b; Last := {b};
ELSE

print NOP; Last := {};
ENDIF

UNTIL Candidates = {};

33 Heuristic

• In the “standard” topological sorting algorithm we pick a node at random when there are several
candidate nodes to chose from. In our scheduling algorithm we need a better heuristic.

• If there is more than one real candidate (a candidate that doesn’t collide with the last instruction
scheduled) we choose one according to these criteria:

1. Pick the candidate with the largest number of outgoing edges. Scheduling this instruction early
will hopefully give us more freedom to schedule the remaining instructions.

2. If all candidates have the same number of outgoing edges, pick the one that has the longest path
to a leaf.

34

Example

35 Example I (a)

Complex Example

(1) lw $1, 100($3)

(2) lw $2, 200($3)

(3) add $3, $3, 22

(4) sub $1, $1, $3

(5) sw $3, 500($0)

(6) add $2, $2, 11

(7) mul $4, $3, 44

(8) mul $5, $4, $1

(9) div $5, $4, $3

11

36 Example I (b)

(1) lw $1,100($3) (2) lw $2,200($3)

(8) add $5,$4,$1

(9) div $5,$4,$3

(3) add $3,$3,22 (5) sw $3,a

(7) mul $4,$3,44

(6) add $2,$2,11

(4) sub $1,$1,$3

• If instruction (b) depends on instruction (a) then (b) can be scheduled after a delay of one cycle.

• We mark real candidates with an r.

37 Example I(c)

{}

(3)

(1)

(6)

(8)

(4) (7) (5)

(9)

(2)

Original
Graph

(3)

(8)

(4) (7) (5)

(9)

(3)

(8)

(4) (7) (5)

(9)

(3) (6)

(8)

(4) (7) (5)

(9)

(6)

(3) isn’t a real
candidate; it collides
with (1).

c
r

(1)

(6)
c

r

c
r(2)(1) c

r

Schedule

Step 3 (6).

Last=

Last=(2) Last=(1)Schedule

Step 2 (1).

Schedule
(2).Step 1

cc

12

38 Example I(d)

c

(8)

(4) (7) (5)

(9)
Step 5

Last=(3) Insert
NOP.

cc c

All candidates
collide with
the last scheduled
instruction.

(8)

(5)

(3) is now a real
candidate since it
doesn’t collide with
(6).

(8)

(4) (5)

(8)

(4) (7) (5)

c

(9)
Schedule
(4).Step 7

Last=(7)

(4)

r

(9)
Step 6

Last=

c
(7)

Schedule
(7).

Schedule

Step 4 (3).
Last=(6)

(3)

(9)

r r
c

r
c

r
c

r

39 Example I(e)

c(8)

(2) lw $2,200($3)

(1) lw $1,100($3)

(6) add $2,$2,11

(3) add $3,$3,22

(7) mul $4,$3,44

(4) sub $1,$1,$3

(9) div $5,$4,$3

NOP

(5) sw $3,a

(8) add $5,$4,$1

(5)
r
c

c(8)
r

(9)
Schedule

Step 8

Last=(4)

Schedule

Step 10 (9).(9)
r
c

Generated Code

(5).

ScheduleLast=(8)

Step 9
(9)

r
c (8).

Last=(8)

NOTE:

is an output
dependence. Hence
there’s no need for
a NOP between them.

(8) → (9)

40

Summary

41 Readings and References

• Read the Tiger book, Chapter 20, pp. 474–497.

• For a background on pipelining and hazards, see Patterson & Hennessy, “Computer Organization and
Design – The Hardware/Software Interface”, pp. 364–367,

13

• Wilhelm & Maurer, “Compiler Design”, pp. 557–558, 570–580.

• Steven Muchnick, Advanced Compiler Design and Implementation, Section 9.2, pp. 269–274 and Chap-
ter 17, pp. 531–547.

42 Summary

• Some processors have instructions with pipeline hot-spots: A value that is computed in one cycle
must be consumed in the next cycle (before it is overwritten).

• We have assumed that the delay between two instructions is always exactly 1 (one) cycle. Real
processors require different delays depending on the instruction.

43

Homework

44 Homework I

• Consider the following basic block:

(1) lw $1, 100($2)

(2) li $3, 100

(3) add $2, $3, 55

(4) sub $1, $3, 66

(5) li $5, 99

(6) add $7, $3, $5

(7) li $3, 93

(8) add $9, $2, $7

(9) sub $1, $9, $3

1. Construct the dependency graph.

2. Apply the scheduling algorithm to the graph. Assume that there is a one-cycle delay between an
instruction and when it’s computed value can be used.

3. Is the generated schedule an optimal one?

45

Exam Problems

46 Exam Problem I (415.730 ’96)

1. What is a pipeline data hazard?

2. Why is it important for the compiler to perform aggressive instruction scheduling, even when the
architecture has hardware interlocks?

3. Describe the algorithms and data structures needed to perform instruction scheduling in the presence
of pipeline data hazards.

14

