
CSc 553 — Principles of Compilation

32 : Scientific Codes

Christian Collberg

Department of Computer Science

University of Arizona

collberg@gmail.com

Copyright c© 2011 Christian Collberg

April 21, 2011

1 Scientific Programs

• In the next couple of lectures we will concentrate on scientific programs. These are programs used in
science and engineering.

• As we will see, these programs don’t look much like the programs you or I write. They don’t manipulate
objects, they don’t use dynamic dispatch. Instead, they manipulate floating point arrays in (often)
very regular patterns, using FOR-loops. And they’re written in FORTRAN.

• The people who run these programs care deeply about speed. We will discuss two ways of speeding up
scientific programs: parallelizing them and making efficient use of the memory hierarchy.

2 Who Needs Speed?

These are some of the traditional users/uses of high-performance computers:

weather forecasting

crypt- & image analysis Very secret!

aeronautical ind. Designing and testing aircrafts. Simulated wind tunnels. “Computational Fluid Dy-
namics” (CFD).

automotive ind. Simulated crash testing.

nuclear ind. Simulation of thermonuclear devices.

computer ind. Design and simulation of VLSI circuits.

pharmaceutical ind. Drug design.

1

3

What Do These Programs Look Like?

4 What Kind of Programs? I

• They are written i FORTRAN! Or sometimes C.

• They are often old, DUSTY-DECK, sequential, and difficult to maintain and rewrite.

• They use many (multidimensional) arrays.

• They consist largely of nested FOR-loops (called DO-loops in FORTRAN).

– A loop nest is a set of loops one inside the next.

– In a perfect loop nest every loop (except the innermost one) contains exactly one loop and
nothing more.

5 What Kind of Programs? II

• A loop that accesses every fourth element of an array is stride-4, if it accesses every element (in order)
it’s stride-1, etc. The following loop has stride-3 accesses to A, and stride-6 access to B:

FOR i := 1 to n BY 3 DO

A[i] := B[2*i]

END

• A number of benchmarks have been constructed to test how compilers/hardware handle these kinds of
codes:

1. Livermore loops (of Lawrence Livermore Labs)

2. NAS benchmark

3. Linpack

6 Common Operations

Scatter

FOR i := 1 TO n DO

v[j[i]] := a[i]

END

Gather

FOR i := 1 TO n DO

v[i] := a[j[i]]

END

Reductions

S := 0; P := 1;

FOR i := 1 TO n DO

S := S + v[i]

P := P * v[i]

END

2

7 Example Loops I

• Livermore loop: first sum.

FORTRAN

DO 11 k = 2,n

11 X(k)= X(k-1) + Y(k)

C

for (k=1 ; k<n ; k++)

x[k] = x[k-1] + y[k];

8 FORTRAN weirdness

• FORTRAN DO-loops: DO foot dovar = inital,final,incr . foot is a statement number (label).
incr can be omitted.

• CONTINUE serves as a placeholder for a label. It does nothing.

• FORTRAN array references use "A()", not "A[]".

• Variables that start with I,J,K are always integers.

• CONJG is a built-in FORTRAN function that takes a complex number x + iy (expressed as (X, Y) in
FORTRAN) as argument and returns the complex conjugate x − iy. Just thought you’d like to
know. . .

• In FORTRAN the comparison operators <,≤, =, 6=, >,≥ are called .LT., .LE., .EQ., .GT., .GE., and
.NE..

9 Example Loops II

• Livermore loop: general linear recurrence equation.

FORTRAN

DO 6 i= 2,n

DO 6 k= 1,i-1

W(i)= W(i) + B(i,k) * W(i-k)

6 CONTINUE

C

for (i=1 ; i<n ; i++)

for (k=0 ; k<i ; k++)

w[i] += b[k][i] * w[(i-k)-1];

3

10 Example Loops III

• Livermore loop: matrix*matrix product

FORTRAN

DO 21 k= 1,25

DO 21 i= 1,25

DO 21 j= 1,n

PX(i,j)= PX(i,j) + VY(i,k) * CX(k,j)

21 CONTINUE

C

for (k=0 ; k<25 ; k++)

for (i=0 ; i<25 ; i++)

for (j=0 ; j<n ; j++)

px[j][i] += vy[k][i] * cx[j][k];

11 Example Loops IV

• Linpack: constant (da) times a vector (dx incremented by incx) plus a vector (dy incremented by
incy).

daxpy(n,da,dx,incx,dy,incy)

double dx[],dy[],da; int incx,incy,n; {
int i,ix,iy,m,mp1;

if ((n <= 0) || (da == 0.0)) return;

if(incx != 1 || incy != 1) {
ix = 0; iy = 0;

if(incx < 0) ix = (-n+1)*incx;

if(incy < 0)iy = (-n+1)*incy;

for (i = 0;i < n; i++) {
dy[iy] = dy[iy] + da*dx[ix];

ix = ix + incx; iy = iy + incy;}
return; }

for (i = 0;i < n; i++) dy[i] = dy[i] + da*dx[i];}

12 Example Loops V (a)

• NAS Benchmark: complex radix 2 ffts on the first dimension of the 2-d array x.

SUBROUTINE CFFT2D1 (IS,M,M1,N,X,W,IP)

COMPLEX X(M1,N), W(M), CT, CX

INTEGER IP(2,M)

DATA PI/3.141592653589793/

DO 110 I = 1, M

IP(1,I) = I

110 CONTINUE

L = 1I1 = 1

4

13 Example Loops V (b)

120 I2 = 3 - I1

DO 130 J = L, M2, L

CX = W(J-L+1)

IF (IS .LT. 0) CX = CONJG (CX)

DO 130 I = J-L+1, J

II = IP(I1,I)

IP(I2,I+J-L) = II

IM = IP(I1,I+M2)

IP(I2,I+J) = IM

DO 130 K = 1, N

CT = X(II,K) - X(IM,K)

X(II,K) = X(II,K) + X(IM,K)

X(IM,K) = CT * CX

130 CONTINUE

14 Example Loops V (c)

L = 2 * L

I1 = I2

IF (L .LE. M2) GOTO 120

DO 150 I = 1, M

II = IP(I1,I)

IF (II .GT. I) THEN

DO 140 K = 1, N

CT = X(I,K)

X(I,K) = X(II,K)

X(II,K) = CT

140 CONTINUE

ENDIF

150 CONTINUE

RETURN

END

15

Floating Point Computations

16 Floating Point Computation I

• All scientific programs manipulate floating point numbers. Many transformations that are legal on an
integer expression are unsafe on the equivalent floating point expressions.

• In IEEE floating point
x ∗ 0 = 0

may not be true, since if x = ∞,
∞ ∗ 0 = NaN

5

(NaN ≡ Not a Number).

• Similarly,
x + 0 = 0

may not be true, since if x = NaN , x+0 would generate an exception, but the right hand side wouldn’t.

17 Floating Point Computation II

• Let R∞ be the largest FP number. Then

1.0 + (R∞ −R∞) = 1.0

but
(1.0 + R∞) −R∞ = 0.0

• We can often safely convert a division by a constant into the equivalent multiplication. For example,

X/16.0

can be transformed to
X ∗ 0.0625

because both 16.0 and 0.0625 can be represented exactly.

18 Floating Point Computation III

• Scientific programs iterate over arrays of floating point numbers. We will often want to transform these
(for-) loops to improve efficiency. We still have to be careful to maintain correctness.

• Assume that we want to sum the elements of the following array:

[1] [2] [3] [4] [5] [6] [7] [· · ·] [3 ∗ n]
1.0 R∞ −R∞ 1.0 R∞ −R∞ 1.0 · · · −R∞

• In the next few slides we’ll show how the access pattern will affect the result of the summation.

19 Floating Point Computation IV

• Accessing the array in stride-1 yields a result of 0.0 .

s := 0.0; n := 3

FOR i := 1 TO 3*n DO

s := s + A[i]

ENDFOR

[1] [2] [3] [4] [5] [6] [7] [8] [9]
1.0 R∞ −R∞ 1.0 R∞ −R∞ 1.0 R∞ −R∞

↑ 1 ↑ 2 ↑ 3 ↑ 4 ↑ 5 ↑ 6 ↑ 7 ↑ 8 ↑ 9

(((((((1.0 + R∞) −R∞) + 1.0) + R∞) −R∞) + 1.0) + R∞) −R∞ = 0.0

6

20 Floating Point Computation V

• Accessing the array backwards yields the result of 1.0 .

s := 0.0; n := 3

FOR i := 3*n TO 1 BY -1 DO

s := s + A[i]

ENDFOR

[1] [2] [3] [4] [5] [6] [7] [8] [9]
1.0 R∞ −R∞ 1.0 R∞ −R∞ 1.0 R∞ −R∞

↑ 9 ↑ 8 ↑ 7 ↑ 6 ↑ 5 ↑ 4 ↑ 3 ↑ 2 ↑ 1

(((((((−R∞ + R∞) + 1.0) −R∞) + R∞) + 1.0) −R∞) + R∞) + 1.0 = 1.0

21 Floating Point Computation VI

• Accessing the array backwards in blocks of 3 yields n .

s := 0.0; n := 3

FOR i := 3*n TO 3 BY -3 DO

t := 0.0

FOR j := i TO i-2 BY -1 DO t := t + A[j] ENDFOR

s := s + t

ENDFOR

[1] [2] [3] [4] [5] [6] [7] [8] [9]
1.0 R∞ −R∞ 1.0 R∞ −R∞ 1.0 R∞ −R∞

↑ 9 ↑ 8 ↑ 7 ↑ 6 ↑ 5 ↑ 4 ↑ 3 ↑ 2 ↑ 1
((−R∞ + R∞) + 1) + · · · + ((−R∞ + R∞) + 1) = 3.0

22 Readings and References

• David Goldberg, What Every Computer Scientist Should Know about Floating-Point Arithmetic., ACM
Computing Surveys, Volume 23, Number 1, 1991, http://www.acm.org/pubs/citations/journals/
surveys/1991-23-1/p5-goldberg/.

7

