CSc 553 - Principles of Compilation

33 : Loop Dependence

Christian Collberg
Department of Computer Science
University of Arizona
collberg@gmail.com

Copyright © 2011 Christian Collberg
April 21, 2011

1

Data Dependence Analysis

2 Data Dependence Analysis I

- Data dependence analysis determines what the constraints are on how a piece of code can be reorganized.
- If we can determine that no data dependencies exist between the different iterations of a loop we may be able to run the loop in parallel or transform it to make better use of the cache.
- For the code below, a compiler could determine that statement S_{1} must execute before S_{2}, and S_{3} before $S_{4} . S_{2}$ and S_{3} can be executed in any order:

```
S1: A := 0;
S2: B := A;
S3: C := A + D;
S4: D := 2;
```


3 Dependence Graphs I

- There can be three kinds of dependencies between statements:
flow dependence
- Also, true dependence or definition-use dependence.
(i) $\quad \mathrm{X} \quad:=\ldots$
(j) $\quad \cdots:=\mathrm{X}$
- Statement (i) generates (defines) a value which is used by statement (j). We write (i) $\longrightarrow(\mathrm{j})$.
- Also, use-definition dependence.
(i)

$$
\ldots:=X
$$

$$
\begin{array}{ll}
& \cdots \cdots \\
X \quad:=\cdots
\end{array}
$$

4 Dependence Graphs II

- Statement (i) uses a value overwritten by statement (j). We write (i) $\longrightarrow(j)$.

Output-dependence

- Also, definition-definition dependence.
(i) $X \quad:=\ldots \quad . .$.
(j) $\quad \mathrm{X} \quad:=\ldots$
- Statements (i) and (j) both assign to (define) the same variable. We write (i) $\rightarrow(j)$.
- Regardless of the type of dependence, if statement (j) depends on (i), then (i) has to be executed before (j).

5 Data Dependence Analysis I

\qquad The Dependence Graph:

```
\(S_{1}: \quad \mathrm{A}:=0 ;\)
\(S_{2}: \quad \mathrm{B}:=\mathrm{A} ;\)
\(S_{3}: \quad \mathrm{C}:=\mathrm{A}+\mathrm{D} ;\)
\(S_{4}: \quad \mathrm{D}:=2 ;\)
```


- In any program without loops, the dependence graph will be acyclic.
- Other common notations are

Flow	\longrightarrow	\equiv	δ	\equiv	δ^{f}
Anti	\longrightarrow	\equiv	$\bar{\delta}$	\equiv	δ^{a}
Output	\square	\equiv	δ°	\equiv	δ^{o}

6

Loop Fundamentals

7 Loop Fundamentals I

- We'll consider only perfect loop nests, where the only non-loop code is within the innermost loop:

```
FOR i}\mp@subsup{i}{1}{}:=1\mathrm{ TO n
    FOR i}\mp@subsup{i}{2}{}:=1 TO n\mp@code{n}\mathrm{ DO
        FOR i}\mp@subsup{i}{k}{}:=1 TO nk D
                statements
            ENDFOR
    ENDFOR
ENDFOR
```

- The iteration-space of a loop nest is the set of iteration vectors (k-tuples): $\langle 1,1,1, \cdots\rangle, \cdots,\left\langle n_{1}, n_{2}, \cdots, n_{k}\right\rangle$.

8 Loop Fundamentals II

```
FOR i := 1 TO 3 DO
    FOR j := 1 TO 4 DO
                        statement
                        ENDFOR
ENDFOR
```

Iteration-space
$\{\langle 1,1\rangle,\langle 1,2\rangle,\langle 1,3\rangle,\langle 1,4\rangle$,
$\langle 2,1\rangle,\langle 2,2\rangle,\langle 2,3\rangle,\langle 2,4\rangle$,
$\langle 3,1\rangle,\langle 3,2\rangle,\langle 3,3\rangle,\langle 3,4\rangle\}$.

9 Loop Fundamentals III

- The iteration-space is often rectangular, but in this case it's trapezoidal:

```
FOR i := 1 TO 3 DO
    FOR j := 1 TO i+1 DO
        statement
    ENDFOR
ENDFOR
```

Iteration-space:	$\begin{aligned} & \{\langle 1,1\rangle,\langle 1,2\rangle, \\ & \langle 2,1\rangle,\langle 2,2\rangle,\langle 2,3\rangle, \\ & \langle 3,1\rangle,\langle 3,2\rangle,\langle 3,3\rangle,\langle 3, \end{aligned}$
Represented graphically:	$1 \stackrel{1}{O}--\geqslant 0^{2} \quad 3 \quad 4$

10 Loop Fundamentals IV

- The index vectors can be lexicographically ordered. $\langle 1,1\rangle \prec\langle 1,2\rangle$ means that iteration $\langle 1,1\rangle$ precedes $\langle 1,2\rangle$.
- In the loop

```
FOR i := 1 TO 3 DO
    FOR j := 1 TO 4 DO
        statement
    ENDFOR
ENDFOR
```

the following relations hold: $\langle 1,1\rangle \prec\langle 1,2\rangle,\langle 1,2\rangle \prec\langle 1,3\rangle,\langle 1,3\rangle \prec\langle 1,4\rangle,\langle 1,4\rangle \prec\langle 2,1\rangle,\langle 2,1\rangle \prec\langle 2,2\rangle, \cdots$, $\langle 3,3\rangle \prec\langle 3,4\rangle$.

- The iteration-space, then, is the lexicographic enumeration of the index vectors. Confused yet?

11

Loop Transformations

12 Loop Transformations I

- The reason that we want to determine loop dependencies is to make sure that loop transformations that we want to perform are legal.
- For example, (for whatever reason) we might want to run a loop backwards:

```
FOR i := 1 TO 4 DO }\quad=>\quad\textrm{FOR}i:=4 TO 1 BY -1 DO
    A[i] := A[i+1] + 5 A [i] := A[i+1] + 5
ENDFOR ENDFOR
```

- The original array is:

$[1]$	$[2]$	$[3]$	$[4]$	$[5]$
0	0	0	0	0

13 Loop Transformations II

- After the original loop the array holds:

$[1]$	$[2]$	$[3]$	$[4]$	$[5]$
5	5	5	5	0

- After the transformed loop the array holds:

$[1]$	$[2]$	$[3]$	$[4]$	$[5]$
20	15	10	5	0

- It is clear that, in this case, reversing the loop is not a legal transformation. The reason is that there is a data dependence between the loop iterations.
- In the original loop A [i] is read before it's assigned to, in the transformed loop A[i] is assigned to before it's read.

14 Loop Transformations III

- The dependencies are easy to spot if we unroll the loop:

$$
\begin{aligned}
& S_{1}: \mathrm{A}[1]:=\mathrm{A}[2]+5 \\
& S_{2}: \mathrm{A}[2]:=\mathrm{A}[3]+5 \\
& S_{3}: \mathrm{A}[3]:=\mathrm{A}[4]+5 \\
& S_{4}: \mathrm{A}[4]:=\mathrm{A}[5]+5 \\
& \Uparrow \text { Unroll } \\
& \text { FOR } i:=1 \mathrm{TO} 4 \mathrm{DO} \\
& \mathrm{~A}[i]:=\mathrm{A}[i+1]+5 \\
& \text { ENDFOR } \\
& \Downarrow \text { Reverse \& Unroll } \\
& S_{4}: \mathrm{A}[4]:=\mathrm{A}[5]+5 \\
& S_{3}: \mathrm{A}[3]:=\mathrm{A}[4]+5 \\
& S_{2}: \mathrm{A}[2]:=\mathrm{A}[3]+5 \\
& S_{1}: \mathrm{A}[1]:=\mathrm{A}[2]+5
\end{aligned}
$$

- Graphically:

15 Loop Dependencies I

- Hence, in this loop

$$
\begin{aligned}
& \text { FOR } i \text { := } 1 \text { TO } 4 \text { DO } \\
& S_{1}: \quad \cdots:=\mathrm{A}[i+1] \\
& S_{2}: \mathrm{A}[i]:=\cdots \\
& \text { ENDFOR }
\end{aligned}
$$

there's an anti-dependence from S_{1} to S_{2} :

- In this loop

$$
\begin{aligned}
& \text { FOR } i:=1 \text { TO } 4 \text { DO } \\
& S_{1}: \mathrm{A}[i]:=\cdots \\
& S_{2}: \cdots:=\mathrm{A}[i-1] \\
& \text { ENDFOR }
\end{aligned}
$$

there's a flow-dependence from S_{1} to S_{2} : \square

16

Loop Dependence Analysis

17 Loop Dependence Analysis I

- Are there dependencies between the statements in a loop, that stop us from transforming it? A general, 1-dim loop:

```
FOR i := From TO To DO
    S : A[f(i)] := ...
    S2: \cdots := A[g(i)]
ENDFOR
```

- $f(i)$ and $g(i)$ are the expressions that index the array A. They're often of the form $c_{1} * i+c_{2}\left(c_{i}\right.$ are constants).
- There's a flow dependence $S_{1} \longrightarrow S_{2}$, if, for some values of I^{d} and I^{u}, From $\leq I^{d}, I^{u} \leq$ To, $I^{d}<I^{u}$, $f\left(I^{d}\right)=g\left(I^{u}\right)$, i.e. the two index expressions are the same.
- I^{d} is the index for the definition $\left(\mathrm{A}\left[I^{d}\right]:=\cdots\right)$ and I^{u} the index for the use $\left(\cdots:=\mathrm{A}\left[I^{u}\right]\right)$.

18 Loop Dependence Analysis II

- $f\left(I^{d}\right)=8 * I^{d}+3, g\left(I^{u}\right)=2 * I^{u}+1$
- Does there exist $1 \leq I^{d} \leq 10,1 \leq I^{u} \leq 10, I^{d}<I^{u}$, such that $8 * I^{d}+3=2 * I^{u}+1$? If that's the case, then $S_{1} \longrightarrow S_{2}$.
- Yes, $I^{d}=1, I^{u}=5 \Rightarrow 8 * I^{d}+3=11=2 * I^{u}+1$.
- There is a loop carried dependence between statement S_{1} and S_{2}.

19

Simple Dependence Tests

20 The GCD Test

- Does there exist a dependence in this loop? I.e., do there exist integers I^{d} and I^{u}, such that $c * I^{d}+j=$ $d * I^{u}+k$?

```
FOR I := 1 TO n DO
    S
    S2: \cdots:= A[d*I+k]
ENDFOR
```

- $c * I^{d}+j=d * I^{u}+k$ only if $\operatorname{gcd}(c, d)$ evenly divides $k-j$, i.e. if $(k-j) \bmod \operatorname{gcd}(c, d)=0$.
- This is a very simple and coarse test. For example, it doesn't check the conditions $1 \leq I^{d} \leq n$, $1 \leq I^{u} \leq n, I^{d}<I^{u}$.
- There are many other much more exact (and complicated!) tests.

21 The GCD Test - Example I

- Does there exist a dependence in this loop?

```
FOR I := 1 TO 10 DO
    S : A [2*I] := ...
    S2:\cdots:= A [2*I+1]
ENDFOR
```

- $c * I^{d}+j=d * I^{u}+k$ only if $\operatorname{gcd}(c, d)$ evenly divides $k-j$, i.e. if $(k-j) \bmod \operatorname{gcd}(c, d)=0$.
- $c=2, j=0, d=2, k=1$.
- $(1-0) \bmod \operatorname{gcd}(2,2)=1 \bmod 2=1$
- $\Rightarrow S_{1}$ and S_{2} are data independent! This should be obvious to us, since S_{1} accesses even elements of A, and S_{2} odd elements.

22 The GCD Test - Example II

```
FOR I := 1 TO 10 DO
    S : A [19*I+3] := ...
    S : \cdots := A[2*I+21]
ENDFOR
```

- $c * I^{d}+j=d * I^{u}+k$ only if $\operatorname{gcd}(c, d)$ evenly divides $k-j$, i.e. if $(k-j) \bmod \operatorname{gcd}(c, d)=0$.
- $c=19, j=3, d=2, k=21$.
- $(21-3) \bmod \operatorname{gcd}(19,2)=18 \bmod 1=0$
- \Rightarrow There's a flow dependence: $S_{1} \longrightarrow S_{2}$.
- The only values that satisfy the dependence are $I^{d}=2$ and $I^{u}=10: 19 * 2+3=41=2 * 10+21$. If the loop had gone from 3 to 9 , there would be no dependence! The gcd-test doesn't catch this.

23 The GCD Test - Example III

```
FOR I := 1 TO 10 DO
    S : A [8* i+3] := ..
    S : \cdots := A[2*i+1]
ENDFOR
```

- $c * I^{d}+j=d * I^{u}+k$ only if $\operatorname{gcd}(c, d)$ evenly divides $k-j$, i.e. if $(k-j) \bmod \operatorname{gcd}(c, d)=0$.
- $c=8, j=3, d=2, k=1$.
- $(1-3) \bmod \operatorname{gcd}(8,2)=-2 \bmod 2=0$
- \Rightarrow There's a flow dependence: $S_{1} \longrightarrow S_{2}$.
- We knew this already, from the example in a previous slide. $I^{d}=1, I^{u}=5 \Rightarrow 8 * I^{d}+3=11=2 * I^{u}+1$.

Dependence Distance

25 Dependence Directions I

```
FOR I := 2 TO 10 DO
    S : A[I] := B[I] + C[I];
    S : D [I] := A[I] + 10;
ENDFOR
```

- On each iteration, S_{1} will assign a value to A [i], and S_{2} will use it.
- Therefore, there's a flow dependence from S_{1} to $S_{2}: S_{1} \delta S_{2}$.
- We say that the data-dependence direction for this dependence is \square, since the dependence stays within one iteration.
- We write: $S_{1} \delta_{=} S_{2}$.

26 Dependence Directions II

```
FOR I := 2 TO 10 DO
    S : A[I] := B[I] + C[I];
    S : D [I] := A [I-1] + 10;
ENDFOR
```

- On each iteration, S_{1} will assign a value to A [i], and S_{2} will use this value in the next iteration.
- E.g., in iteration 3, S_{1} assigns a value to A [3]. This value is used by S_{2} in iteration 4.
- Therefore, there's a flow dependence from S_{1} to $S_{2}: S_{1} \delta S_{2}$.
- We say that the data-dependence direction for this dependence is \langle, since the dependence flows from i-1 to i.
- We write: $S_{1} \delta_{<} S_{2}$.

27 Dependence Directions III

```
FOR I := 2 TO 10 DO
    S : A [I] := B[I] + C[I];
    S : D [I] := A [I+1] + 10;
ENDFOR
```

- On each iteration, S_{2} will use a value that will be overwritten by S_{1} in the next iteration.
- E.g., in iteration 3, S_{2} uses the value in A [4]. This value is overwritten by S_{1} in iteration 4.
- Therefore, there's a anti dependence from S_{2} to $S_{1}: S_{2} \bar{\delta} S_{1}$.
- We say that the data-dependence direction for this dependence is \langle, since the dependence flows from i to $\mathrm{i}+1$.
- We write: $S_{2} \bar{\delta}_{<} S_{1}$.

Loop Nests

29 Loop Nests I

```
FOR I := 0 TO 9 DO
    FOR J := 1 TO 10 DO
        S : \cdots := A[I,J - 1]
        S : A [I,J] := ...
    ENDFOR
ENDFOR
```

- With nested loops the data-dependence directions become vectors. There is one element per loop in the nest.
- In the loop above there is a flow dependence $S_{2} \longrightarrow S_{1}$ since the element being assigned by S_{2} in iteration $I(\mathrm{~A}[I, J])$ will be used by S_{1} in the next iteration.
- This dependence is carried by the J loop.
- We write: $S_{2} \delta_{=,<} S_{1}$.

30 Loop Nests II - Example

```
FOR I := 1 TO N DO
    FOR J := 2 TO N DO
                        S : A [I, J] := A [I,J-1] + B[I,J];
                        S : C [I, J] := A [I,J] + D [I + 1,J];
                S3: D [I,J] := 0.1;
    ENDFOR
ENDFOR
```

$S_{1} \delta_{=,<} S_{1} S_{1}$ assigns a value to $\mathrm{A}[I, J]$ in iteration (I, J) that will be used by S_{1} in the next iteration $(I, J+1)$. The dependence is carried by the J loop.
$S_{1} \delta_{=,=} S_{2} S_{1}$ assigns a value to A $[I, J]$ in iteration (I, J) that will be used by S_{2} in the same iteration.
$S_{2} \bar{\delta}_{<,=} S_{3} S_{2}$ uses the value of $\mathrm{D}[I+1, J]$ in iteration (I, J). It will be overwritten by S_{3} in the next I-iteration. The I-loop carries the dependence.

31

Model

32 A Model of Dependencies

- Suppose we have the following loop-nest:

```
for i:=1 to x do
    for j := 1 to y do
        si: A [a*i+b*j+c,d*i+e*j+f] = ...
```


- Then there is a dependency between statements s_{1} and s_{2} if there exist iterations (i, j) and $\left(i^{\prime}, j^{\prime}\right)$, such that

$$
\begin{aligned}
a * i+b * j+c & =g * i^{\prime}+h * j^{\prime}+k \\
d * i+e * j+f & =l * i^{\prime}+m * j^{\prime}+n
\end{aligned}
$$

or

$$
\begin{aligned}
a * i-g * i^{\prime}+b * j-h * j^{\prime} & =k-c \\
d * i-l * i^{\prime}+e * j-m * j^{\prime} & =n-f
\end{aligned}
$$

- These equations can easily be generalized to deeper loop nests and higher-dimensional arrays.

33 A Model of Dependencies

- This is equivalent to an integer programming problem (a system of linear equations with all integer variables and constants) in four variables:
$\left[\begin{array}{llll}a & -g & b & -h \\ d & -l & e & -m\end{array}\right] \times\left[\begin{array}{l}i \\ i^{\prime} \\ j \\ j^{\prime}\end{array}\right]=\left[\begin{array}{l}k-c \\ n-f\end{array}\right]$
- If the loop bounds are known we get some additional constraints:

$$
\begin{aligned}
& 1 \leq i \leq x, \quad 1 \leq i^{\prime} \leq x \\
& 1 \leq j \leq y, \quad 1 \leq j^{\prime} \leq y
\end{aligned}
$$

- In other words, to solve this dependency problem we look for integers $i, i^{\prime}, j, j^{\prime}$ such that the equation and constraints above are satisfied.

34

Homework

35 Exam I/a (415.730/96)

1. What is the gcd-test? What do we mean when we say that the gcd-test is conservative?
2. List the data dependencies $(\longrightarrow, \longrightarrow,-\infty)$ for the loops below.
```
    FOR i := 1 TO 7 DO
S : ... := A [2*i+1];
S : ... := A [4*i];
S3: A [8*i+3] := \cdots;
    END;
    FOR i := 1 TO n DO
S}: \textrm{X}\quad:=\textrm{A}[2*i]+5
S : A [2*i+1] := X + B[i+7];
S : A [i+5] := C[10*i];
S4: B [i+10] := C [12*i] + 13;
    END;
```


36 Exam II (415.730/97)

- Consider the following loop:

```
FOR i := 1 TO n DO
    S : 
    S : A [i] := A [i] + B[i-1];
    S : D [i] := C[i] * 3;
    S4: C[i] := B[i-1] + 5;
ENDFOR
```

1. List the data dependencies for the loop. For each dependence indicate whether it is a flow- (\longrightarrow), anti- (\rightarrow), or output-dependence (\rightarrow), and whether it is a loop-carried dependence or not.
2. Show the data dependence graph for the loop.

Summary

38 Readings and References

- Padua \& Wolfe, Advanced Compiler Optimizations for Supercomputers, CACM, Dec 1996, Vol 29, No 12, pp. 1184-1187, http://www.acm.org/pubs/citations/journals/cacm/1986-29-12/p1184-padua/.

39 Summary I

- Dependence analysis is an important part of any parallelizing compiler. In general, it's a very difficult problem, but, fortunately, most programs have very simple index expressions that can be easily analyzed.
- Most compilers will try to do a good job on common loops, rather than a half-hearted job on all loops.
- Integer programming is NP-complete.

40 Summary II

- When faced with a loop

```
FOR i := From TO To DO
    S : A [f(i)] := ...
    S : \cdots := A [g(i)]
ENDFOR
```

the compiler will try to determine if there are any index values I, J for which $f(I)=g(J)$. A number of cases can occur:

1. The compiler decides that $f(i)$ and $g(i)$ are too complicated to analyze. \Rightarrow Run the loop serially.
2. The compiler decides that $f(i)$ and $g(i)$ are very simple (e.g. $f(i)=i, f(i)=c * i, f(i)=i+c$, $f(i)=c * i+d)$, and does the analysis using some built-in pattern matching rules. \Rightarrow Run the loop in parallel or serially, depending on the outcome.

41 Summary III

- contd.

3. The compiler applies some advanced method to determine the dependence. \Rightarrow Run the loop in parallel or serially, depending on the outcome.

- Most compilers use pattern-matching techniques to look for important and common constructs, such as reductions (sums, products, min \& max of vectors).
- The simplest analysis of all is a name analysis: If every identifier in the loop occurs only once, there are no dependencies, and the loop can be trivially parallelized:

```
FOR i := From TO To DO
    S : A [f(i)] := B[g(i)]+C[h(i)];
    S : D [j(i)] := E [k(i)]*F[m(i)];
ENDFOR
```

