CSc 553 — Principles of Compilation

33: Loop Dependence

Christian Collberg Department of Computer Science University of Arizona collberg@gmail.com

Copyright © 2011 Christian Collberg

April 21, 2011

1

Data Dependence Analysis

2 Data Dependence Analysis I

- Data dependence analysis determines what the constraints are on how a piece of code can be reorganized.
- If we can determine that no data dependencies exist between the different iterations of a loop we may be able to run the loop in parallel or transform it to make better use of the cache.
- For the code below, a compiler could determine that statement S_1 must execute before S_2 , and S_3 before S_4 . S_2 and S_3 can be executed in any order:

3 Dependence Graphs I

• There can be three kinds of dependencies between statements:

flow dependence

• Also, true dependence or definition-use dependence.

(i) X := ···
 (j) ··· := X

• Statement (i) generates (defines) a value which is used by statement (j). We write (i) \longrightarrow (j).

• Also, use-definition dependence.

(i) $\cdots := X$ (j) $X := \cdots$

4 Dependence Graphs II

• Statement (i) uses a value overwritten by statement (j). We write $(i) \rightarrow (j)$.

Output-dependence

• Also, definition-definition dependence.

(i) $X := \cdots$ (j) $X := \cdots$

- Statements (i) and (j) both assign to (define) the same variable. We write $(i) \rightarrow (j)$.
- Regardless of the type of dependence, if statement (j) depends on (i), then (i) has to be executed before (j).

_____ The Dependence Graph: _____

5 Data Dependence Analysis I

- In any program without loops, the dependence graph will be acyclic.
- Other common notations are

$$\begin{array}{ccccc} \text{Flow} & \longrightarrow & \equiv & \delta & \equiv & \delta^{f} \\ \hline \text{Anti} & \longrightarrow & \equiv & \overline{\delta} & \equiv & \delta^{a} \\ \hline \text{Output} & \longrightarrow & \equiv & \delta^{\circ} & \equiv & \delta^{\circ} \end{array}$$

6

Loop Fundamentals

7 Loop Fundamentals I

• We'll consider only perfect loop nests, where the only non-loop code is within the innermost loop:

```
FOR i_1 := 1 TO n_1 DO
FOR i_2 := 1 TO n_2 DO
...
FOR i_k := 1 TO n_k DO
statements
ENDFOR
...
ENDFOR
ENDFOR
```

• The *iteration-space* of a loop nest is the set of *iteration vectors* (k-tuples): $\langle 1, 1, 1, \cdots \rangle, \cdots, \langle n_1, n_2, \cdots, n_k \rangle$.

8 Loop Fundamentals II

FOR i := 1 TO 3 DO FOR j := 1 TO 4 DO statement ENDFOR ENDFOR

9 Loop Fundamentals III

• The iteration-space is often rectangular, but in this case it's *trapezoidal*:

```
FOR i := 1 TO 3 DO
FOR j := 1 TO i + 1 DO
statement
ENDFOR
ENDFOR
```

```
Iteration-space:

\{ \langle 1, 1 \rangle, \langle 1, 2 \rangle, \\ \langle 2, 1 \rangle, \langle 2, 2 \rangle, \langle 2, 3 \rangle, \\ \langle 3, 1 \rangle, \langle 3, 2 \rangle, \langle 3, 3 \rangle, \langle 3, 4 \rangle \}

Represented graphically:

\stackrel{1}{\underset{2 \\ 0 \\ - > 0 \\ 3 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\ - > 0 \\
```

10 Loop Fundamentals IV

- The index vectors can be lexicographically ordered. $\langle 1, 1 \rangle \prec \langle 1, 2 \rangle$ means that iteration $\langle 1, 1 \rangle$ precedes $\langle 1, 2 \rangle$.
- In the loop

```
FOR i := 1 TO 3 DO
FOR j := 1 TO 4 DO
statement
ENDFOR
ENDFOR
```

the following relations hold: $\langle 1,1 \rangle \prec \langle 1,2 \rangle$, $\langle 1,2 \rangle \prec \langle 1,3 \rangle$, $\langle 1,3 \rangle \prec \langle 1,4 \rangle$, $\langle 1,4 \rangle \prec \langle 2,1 \rangle$, $\langle 2,1 \rangle \prec \langle 2,2 \rangle$, \cdots , $\langle 3,3 \rangle \prec \langle 3,4 \rangle$.

• The iteration-space, then, is the lexicographic enumeration of the index vectors. Confused yet?

11

Loop Transformations

12 Loop Transformations I

- The reason that we want to determine loop dependencies is to make sure that loop transformations that we want to perform are legal.
- For example, (for whatever reason) we might want to run a loop backwards:

FOR
$$i := 1$$
 TO 4 DO \implies FOR $i := 4$ TO 1 BY -1 DO $A[i] := A[i+1] + 5$ $A[i] := A[i+1] + 5$ ENDFORENDFOR

• The original array is:

13 Loop Transformations II

• After the original loop the array holds:

[1]	[2]	[3]	[4]	[5]
5	5	5	5	0

• After the transformed loop the array holds:

[1]	[2]	[3]	[4]	[5]
20	15	10	5	0

- It is clear that, in this case, reversing the loop is not a legal transformation. The reason is that there is a data dependence between the loop iterations.
- In the original loop A[i] is read before it's assigned to, in the transformed loop A[i] is assigned to before it's read.

14 Loop Transformations III

• The dependencies are easy to spot if we unroll the loop:

• Graphically:
$$(S_1) + (S_2) + (S_3) + (S_4)$$

15 Loop Dependencies I

• Hence, in this loop

FOR i := 1 TO 4 DO $S_1: \cdots := A[i+1]$ $S_2: A[i] := \cdots$ ENDFOR

there's an anti-dependence from S_1 to S_2 : $S_1 \rightarrow S_2$

• In this loop

```
FOR i := 1 TO 4 DO

S_1: A[i] := \cdots

S_2: \cdots := A[i-1]

ENDFOR
```

there's a flow-dependence from S_1 to S_2 : $S_1 \longrightarrow S_2$

16

Loop Dependence Analysis

17 Loop Dependence Analysis I

• Are there dependencies between the statements in a loop, that stop us from transforming it? A general, 1-dim loop:

FOR
$$i$$
 := From TO To DO
 S_1 : A[$f(i)$] := \cdots
 S_2 : \cdots := A[$g(i)$]
ENDFOR

- f(i) and g(i) are the expressions that index the array A. They're often of the form $c_1 * i + c_2$ (c_i are constants).
- There's a flow dependence $S_1 \longrightarrow S_2$, if, for some values of I^d and I^u , From $\leq I^d$, $I^u \leq \text{To}$, $I^d < I^u$, $f(I^d) = g(I^u)$, i.e. the two index expressions are the same.
- I^d is the index for the definition $(A[I^d]:=\cdots)$ and I^u the index for the use $(\cdots:=A[I^u])$.

18 Loop Dependence Analysis II

 Example

 FOR i := 1 TO 10 DO

 S_1 : A[8 * i + 3] := ···

 S_2 : ··· := A[2 * i + 1]

 ENDFOR

- $f(I^d) = 8 * I^d + 3, g(I^u) = 2 * I^u + 1$
- Does there exist $1 \leq I^d \leq 10, 1 \leq I^u \leq 10, I^d < I^u$, such that $8 * I^d + 3 = 2 * I^u + 1$? If that's the case, then $S_1 \longrightarrow S_2$.
- Yes, $I^d = 1, I^u = 5 \Rightarrow 8 * I^d + 3 = 11 = 2 * I^u + 1$.
- There is a **loop carried** dependence between statement S_1 and S_2 .

$\mathbf{19}$

Simple Dependence Tests

20 The GCD Test

• Does there exist a dependence in this loop? I.e., do there exist integers I^d and I^u , such that $c * I^d + j = d * I^u + k$?

FOR
$$I := 1$$
 TO n DO
 $S_1: A[c * I + j] := \cdots$
 $S_2: \cdots := A[d * I + k]$
ENDFOR

- $c * I^d + j = d * I^u + k$ only if gcd(c, d) evenly divides k j, i.e. if $(k j) \mod gcd(c, d) = 0$.
- This is a very simple and coarse test. For example, it doesn't check the conditions $1 \leq I^d \leq n$, $1 \leq I^u \leq n$, $I^d < I^u$.
- There are many other much more exact (and complicated!) tests.

21 The GCD Test – Example I

• Does there exist a dependence in this loop?

```
FOR I := 1 TO 10 DO

S_1: A[2*I] := \cdots

S_2: \cdots := A[2*I+1]

ENDFOR
```

- $c * I^d + j = d * I^u + k$ only if gcd(c, d) evenly divides k j, i.e. if $(k j) \mod gcd(c, d) = 0$.
- c = 2, j = 0, d = 2, k = 1.
- $(1-0) \mod \gcd(2,2) = 1 \mod 2 = 1$
- \Rightarrow S_1 and S_2 are data independent! This should be obvious to us, since S_1 accesses even elements of A, and S_2 odd elements.

22 The GCD Test – Example II

FOR I := 1 TO 10 DO $S_1: A[19*I+3] := \cdots$ $S_2: \cdots := A[2*I+21]$ ENDFOR

- $c * I^d + j = d * I^u + k$ only if gcd(c, d) evenly divides k j, i.e. if $(k j) \mod gcd(c, d) = 0$.
- c = 19, j = 3, d = 2, k = 21.
- $(21-3) \mod \gcd(19,2) = 18 \mod 1 = 0$
- \Rightarrow There's a flow dependence: $S_1 \longrightarrow S_2$.
- The only values that satisfy the dependence are $I^d = 2$ and $I^u = 10$: 19 * 2 + 3 = 41 = 2 * 10 + 21. If the loop had gone from 3 to 9, there would be no dependence! The gcd-test doesn't catch this.

23 The GCD Test – Example III

```
FOR I := 1 TO 10 DO

S_1: A[8 * i + 3] := \cdots

S_2: \cdots := A[2 * i + 1]

ENDFOR
```

- $c * I^d + j = d * I^u + k$ only if gcd(c, d) evenly divides k j, i.e. if $(k j) \mod gcd(c, d) = 0$.
- c = 8, j = 3, d = 2, k = 1.
- $(1-3) \mod \gcd(8,2) = -2 \mod 2 = 0$
- \Rightarrow There's a flow dependence: $S_1 \longrightarrow S_2$.
- We knew this already, from the example in a previous slide. $I^d = 1, I^u = 5 \Rightarrow 8 * I^d + 3 = 11 = 2 * I^u + 1.$

25 Dependence Directions I

FOR I := 2 TO 10 DO S_1 : A[I] := B[I] + C[I]; S_2 : D[I] := A[I] + 10; ENDFOR

- On each iteration, S_1 will assign a value to A[i], and S_2 will use it.
- Therefore, there's a flow dependence from S_1 to S_2 : $S_1 \delta S_2$.
- We say that the **data-dependence direction** for this dependence is **=**, since the dependence stays within one iteration.
- We write: $S_1 \delta_= S_2$.

26 Dependence Directions II

```
FOR I := 2 TO 10 DO

S_1: A[I] := B[I] + C[I];

S_2: D[I] := A[I-1] + 10;

ENDFOR
```

- On each iteration, S_1 will assign a value to A[i], and S_2 will use this value in the next iteration.
- E.g., in iteration 3, S_1 assigns a value to A[3]. This value is used by S_2 in iteration 4.
- Therefore, there's a flow dependence from S_1 to S_2 : $S_1 \delta S_2$.
- We say that the data-dependence direction for this dependence is <, since the dependence flows from i-1 to i.
- We write: $S_1 \delta_{\leq} S_2$.

27 Dependence Directions III

```
FOR I := 2 TO 10 DO

S_1: A[I] := B[I] + C[I];

S_2: D[I] := A[I+1] + 10;

ENDFOR
```

- On each iteration, S_2 will use a value that will be overwritten by S_1 in the next iteration.
- E.g., in iteration 3, S_2 uses the value in A[4]. This value is overwritten by S_1 in iteration 4.
- Therefore, there's a anti dependence from S_2 to S_1 : $S_2 \overline{\delta} S_1$.
- We say that the data-dependence direction for this dependence is <, since the dependence flows from i to i+1.
- We write: $S_2 \ \overline{\delta}_{<} S_1$.

Loop Nests

29 Loop Nests I

```
FOR I := 0 TO 9 DO
FOR J := 1 TO 10 DO
S_1: \cdots := A[I, J - 1]
S_2: A[I, J] := \cdots
ENDFOR
ENDFOR
```

- With nested loops the data-dependence directions become **vectors**. There is one element per loop in the nest.
- In the loop above there is a flow dependence $S_2 \longrightarrow S_1$ since the element being assigned by S_2 in iteration I(A[I, J]) will be used by S_1 in the next iteration.
- This dependence is **carried** by the *J* loop.
- We write: $S_2 \delta_{=,<} S_1$.

30 Loop Nests II – Example

```
FOR I := 1 TO N DO

FOR J := 2 TO N DO

S_1: A[I, J] := A[I, J-1] + B[I, J];

S_2: C[I, J] := A[I, J] + D[I+1, J];

S_3: D[I, J] := 0.1;

ENDFOR

ENDFOR
```

- $S_1 \delta_{=,<} S_1$ S_1 assigns a value to A[I, J] in iteration (I, J) that will be used by S_1 in the next iteration (I, J+1). The dependence is carried by the J loop.
- $S_1 \delta_{=,=} S_2 \mid S_1$ assigns a value to A[I, J] in iteration (I, J) that will be used by S_2 in the same iteration.
- $S_2 \overline{\delta}_{<,=} S_3$ S_2 uses the value of D[I + 1, J] in iteration (I, J). It will be overwritten by S_3 in the next *I*-iteration. The *I*-loop carries the dependence.

 $\mathbf{31}$

Model

32 A Model of Dependencies

• Suppose we have the following loop-nest:

```
for i:=1 to x do
  for j := 1 to y do
    s1: A[a*i+b*j+c,d*i+e*j+f] = ...
    s2:...= A[g*i'+h*j'+k,l*i'+m*j'+n]
```

• Then there is a dependency between statements s_1 and s_2 if there exist iterations (i, j) and (i', j'), such that

$$\begin{array}{rcl} a * i + b * j + c &=& g * i' + h * j' + k \\ d * i + e * j + f &=& l * i' + m * j' + n \end{array}$$

or

$$a * i - g * i' + b * j - h * j' = k - c$$

 $d * i - l * i' + e * j - m * j' = n - f$

• These equations can easily be generalized to deeper loop nests and higher-dimensional arrays.

33 A Model of Dependencies

• This is equivalent to an integer programming problem (a system of linear equations with all integer variables and constants) in four variables:

$$\begin{bmatrix} a & -g & b & -h \\ d & -l & e & -m \end{bmatrix} \times \begin{bmatrix} i \\ i' \\ j \\ j' \end{bmatrix} = \begin{bmatrix} k-c \\ n-f \end{bmatrix}$$

• If the loop bounds are known we get some additional constraints:

$$\begin{array}{ll} 1 \leq i \leq x, & 1 \leq i' \leq x, \\ 1 \leq j \leq y, & 1 \leq j' \leq y \end{array}$$

• In other words, to solve this dependency problem we look for integers i, i', j, j' such that the equation and constraints above are satisfied.

 $\mathbf{34}$

Homework

35 Exam I/a (415.730/96)

- 1. What is the gcd-test? What do we mean when we say that the gcd-test is *conservative*?
- 2. List the data dependencies $(\longrightarrow, \rightarrow, \rightarrow)$ for the loops below.

```
FOR i := 1 TO 7 DO
S_1: \cdots
                   := A[2 * i + 1];
S_2: \cdots
                   := A[4 * i];
S_3: A[8 * i + 3] := \cdots;
   END;
   FOR i := 1 TO n DO
S_1: X
                  := A[2 * i] + 5;
S_2: A[2 * i + 1] := X + B[i + 7];
S_3:
      A[i+5] := C[10*i];
S_4: B[i+10]
                   := C[12 * i] + 13;
   END;
```

36 Exam II (415.730/97)

• Consider the following loop:

FOR i := 1 TO n DO $S_1: B[i] := C[i-1] * 2;$ $S_2: A[i] := A[i] + B[i-1];$ $S_3: D[i] := C[i] * 3;$ $S_4: C[i] := B[i-1] + 5;$ ENDFOR

- 1. List the data dependencies for the loop. For each dependence indicate whether it is a flow- (\longrightarrow) , anti- (\rightarrow) , or output-dependence (\rightarrow) , and whether it is a loop-carried dependence or not.
- 2. Show the data dependence graph for the loop.

37

Summary

38 Readings and References

• Padua & Wolfe, Advanced Compiler Optimizations for Supercomputers, CACM, Dec 1996, Vol 29, No 12, pp. 1184–1187, http://www.acm.org/pubs/citations/journals/cacm/1986-29-12/p1184-padua/.

39 Summary I

- Dependence analysis is an important part of any parallelizing compiler. In general, it's a very difficult problem, but, fortunately, most programs have very simple index expressions that can be easily analyzed.
- Most compilers will try to do a good job on **common** loops, rather than a half-hearted job on all loops.
- Integer programming is NP-complete.

40 Summary II

• When faced with a loop

```
FOR i := From TO To DO

S_1: A[f(i)] := \cdots

S_2: \cdots := A[g(i)]

ENDFOR
```

the compiler will try to determine if there are any index values I, J for which f(I) = g(J). A number of cases can occur:

- 1. The compiler decides that f(i) and g(i) are too complicated to analyze. \Rightarrow Run the loop serially.
- 2. The compiler decides that f(i) and g(i) are very simple (e.g. f(i)=i, f(i)=c*i, f(i)=i+c, f(i)=c*i+d), and does the analysis using some built-in pattern matching rules. ⇒ Run the loop in parallel or serially, depending on the outcome.

41 Summary III

- contd.
 - 3. The compiler applies some advanced method to determine the dependence. \Rightarrow Run the loop in parallel or serially, depending on the outcome.
- Most compilers use pattern-matching techniques to look for important and common constructs, such as reductions (sums, products, min & max of vectors).
- The simplest analysis of all is a *name analysis*: If every identifier in the loop occurs only once, there are no dependencies, and the loop can be trivially parallelized:

```
FOR i := From TO To DO

S_1: A[f(i)] := B[g(i)]+C[h(i)];

S_2: D[j(i)] := E[k(i)]*F[m(i)];

ENDFOR
```