
CSc 553 — Principles of Compilation

33 : Loop Dependence

Christian Collberg

Department of Computer Science

University of Arizona

collberg@gmail.com

Copyright c© 2011 Christian Collberg

April 21, 2011

1

Data Dependence Analysis

2 Data Dependence Analysis I

• Data dependence analysis determines what the constraints are on how a piece of code can be reorga-
nized.

• If we can determine that no data dependencies exist between the different iterations of a loop we may
be able to run the loop in parallel or transform it to make better use of the cache.

• For the code below, a compiler could determine that statement S1 must execute before S2, and S3

before S4. S2 and S3 can be executed in any order:

S1: A := 0;

S2: B := A;

S3: C := A + D;

S4: D := 2;

3 Dependence Graphs I

• There can be three kinds of dependencies between statements:

flow dependence

• Also, true dependence or definition-use dependence.

(i) X := · · ·
.....

(j) · · · := X

• Statement (i) generates (defines) a value which is used by statement (j). We write (i) −→ (j).

1

anti-dependence

• Also, use-definition dependence.

(i) · · · := X

.....

(j) X := · · ·

4 Dependence Graphs II

• Statement (i) uses a value overwritten by statement (j). We write (i)−→+ (j).

Output-dependence

• Also, definition-definition dependence.

(i) X := · · ·

(j) X := · · ·

• Statements (i) and (j) both assign to (define) the same variable. We write (i)−→◦ (j).

• Regardless of the type of dependence, if statement (j) depends on (i), then (i) has to be executed
before (j).

5 Data Dependence Analysis I

The Dependence Graph:

S1: A := 0;

S2: B := A;

S3: C := A + D;

S4: D := 2;

S3

S4

S1

S2

• In any program without loops, the dependence graph will be acyclic.

• Other common notations are

Flow −→ ≡ δ ≡ δf

Anti −→+ ≡ δ ≡ δa

Output −→◦ ≡ δ◦ ≡ δo

6

Loop Fundamentals

2

7 Loop Fundamentals I

• We’ll consider only perfect loop nests, where the only non-loop code is within the innermost loop:

FOR i1 := 1 TO n1 DO

FOR i2 := 1 TO n2 DO

· · ·
FOR ik := 1 TO nk DO

statements

ENDFOR

· · ·
ENDFOR

ENDFOR

• The iteration-space of a loop nest is the set of iteration vectors (k-tuples): 〈1, 1, 1, · · · 〉,· · · ,〈n1, n2, · · · , nk〉.

8 Loop Fundamentals II

FOR i := 1 TO 3 DO

FOR j := 1 TO 4 DO

statement

ENDFOR

ENDFOR

Iteration-space: {〈1, 1〉,〈1, 2〉,〈1, 3〉,〈1, 4〉,
〈2, 1〉,〈2, 2〉,〈2, 3〉,〈2, 4〉,
〈3, 1〉,〈3, 2〉,〈3, 3〉,〈3, 4〉}.

Represented graphically:
2

431

i

j

1

3

2

9 Loop Fundamentals III

• The iteration-space is often rectangular, but in this case it’s trapezoidal:

FOR i := 1 TO 3 DO

FOR j := 1 TO i + 1 DO

statement

ENDFOR

ENDFOR

Iteration-space: {〈1, 1〉,〈1, 2〉,
〈2, 1〉,〈2, 2〉,〈2, 3〉,
〈3, 1〉,〈3, 2〉,〈3, 3〉,〈3, 4〉}

Represented graphically:
i

j

1

3

2

2 431

3

10 Loop Fundamentals IV

• The index vectors can be lexicographically ordered. 〈1, 1〉≺〈1, 2〉 means that iteration 〈1, 1〉 precedes
〈1, 2〉.

• In the loop

FOR i := 1 TO 3 DO

FOR j := 1 TO 4 DO

statement

ENDFOR

ENDFOR

the following relations hold: 〈1, 1〉≺〈1, 2〉, 〈1, 2〉≺〈1, 3〉, 〈1, 3〉≺〈1, 4〉, 〈1, 4〉≺〈2, 1〉, 〈2, 1〉≺〈2, 2〉, · · · ,
〈3, 3〉≺〈3, 4〉.

• The iteration-space, then, is the lexicographic enumeration of the index vectors. Confused yet?

11

Loop Transformations

12 Loop Transformations I

• The reason that we want to determine loop dependencies is to make sure that loop transformations
that we want to perform are legal.

• For example, (for whatever reason) we might want to run a loop backwards:

FOR i := 1 TO 4 DO

A[i] := A[i + 1] + 5

ENDFOR

⇒ FOR i := 4 TO 1 BY -1 DO

A[i] := A[i + 1] + 5

ENDFOR

• The original array is:

[1] [2] [3] [4] [5]
0 0 0 0 0

13 Loop Transformations II

• After the original loop the array holds:

[1] [2] [3] [4] [5]
5 5 5 5 0

• After the transformed loop the array holds:

[1] [2] [3] [4] [5]
20 15 10 5 0

• It is clear that, in this case, reversing the loop is not a legal transformation. The reason is that there
is a data dependence between the loop iterations.

• In the original loop A[i] is read before it’s assigned to, in the transformed loop A[i] is assigned to
before it’s read.

4

14 Loop Transformations III

• The dependencies are easy to spot if we unroll the loop:

S1: A[1] := A[2] + 5

S2: A[2] := A[3] + 5

S3: A[3] := A[4] + 5

S4: A[4] := A[5] + 5

⇑ Unroll

FOR i := 1 TO 4 DO

A[i] := A[i + 1] + 5

ENDFOR

⇓ Reverse & Unroll

S4: A[4] := A[5] + 5

S3: A[3] := A[4] + 5

S2: A[2] := A[3] + 5

S1: A[1] := A[2] + 5

• Graphically:
S4S1 S2 S3

15 Loop Dependencies I

• Hence, in this loop

FOR i := 1 TO 4 DO

S1: · · · := A[i + 1]
S2: A[i] := · · ·

ENDFOR

there’s an anti-dependence from S1 to S2:
S1 S2

• In this loop

FOR i := 1 TO 4 DO

S1: A[i] := · · ·
S2: · · · := A[i − 1]

ENDFOR

there’s a flow-dependence from S1 to S2:
S2S1

16

Loop Dependence Analysis

5

17 Loop Dependence Analysis I

• Are there dependencies between the statements in a loop, that stop us from transforming it? A general,
1-dim loop:

FOR i := From TO To DO

S1: A[f(i)] := · · ·
S2: · · · := A[g(i)]

ENDFOR

• f(i) and g(i) are the expressions that index the array A. They’re often of the form c1 ∗ i + c2 (ci are
constants).

• There’s a flow dependence S1 −→ S2, if, for some values of Id and Iu, From ≤ Id, Iu ≤ To, Id < Iu,
f(Id) = g(Iu), i.e. the two index expressions are the same.

• Id is the index for the definition (A[Id]:=· · ·) and Iu the index for the use (· · · :=A[Iu]).

18 Loop Dependence Analysis II

Example

FOR i := 1 TO 10 DO

S1: A[8 ∗ i + 3] := · · ·
S2: · · · := A[2 ∗ i + 1]

ENDFOR

• f(Id) = 8 ∗ Id + 3, g(Iu) = 2 ∗ Iu + 1

• Does there exist 1 ≤ Id ≤ 10, 1 ≤ Iu ≤ 10, Id < Iu, such that 8 ∗ Id + 3 = 2 ∗ Iu + 1? If that’s the
case, then S1 −→ S2.

• Yes, Id = 1, Iu = 5 ⇒ 8 ∗ Id + 3 = 11 = 2 ∗ Iu + 1.

• There is a loop carried dependence between statement S1 and S2.

19

Simple Dependence Tests

20 The GCD Test

• Does there exist a dependence in this loop? I.e., do there exist integers Id and Iu, such that c∗Id +j =
d ∗ Iu + k?

FOR I := 1 TO n DO

S1: A[c ∗ I + j] := · · ·
S2: · · · := A[d ∗ I + k]

ENDFOR

• c ∗ Id + j = d ∗ Iu + k only if gcd(c, d) evenly divides k − j, i.e. if (k − j) mod gcd(c, d) = 0.

• This is a very simple and coarse test. For example, it doesn’t check the conditions 1 ≤ Id ≤ n,
1 ≤ Iu ≤ n, Id < Iu.

• There are many other much more exact (and complicated!) tests.

6

21 The GCD Test – Example I

• Does there exist a dependence in this loop?

FOR I := 1 TO 10 DO

S1: A[2*I] := · · ·
S2: · · · := A[2*I+1]

ENDFOR

• c ∗ Id + j = d ∗ Iu + k only if gcd(c, d) evenly divides k − j, i.e. if (k − j) mod gcd(c, d) = 0.

• c = 2, j = 0, d = 2, k = 1.

• (1 − 0) mod gcd(2, 2) = 1 mod 2 = 1

• ⇒ S1 and S2 are data independent! This should be obvious to us, since S1 accesses even elements of
A, and S2 odd elements.

22 The GCD Test – Example II

FOR I := 1 TO 10 DO

S1: A[19*I+3] := · · ·
S2: · · · := A[2*I+21]

ENDFOR

• c ∗ Id + j = d ∗ Iu + k only if gcd(c, d) evenly divides k − j, i.e. if (k − j) mod gcd(c, d) = 0.

• c = 19, j = 3, d = 2, k = 21.

• (21 − 3) mod gcd(19, 2) = 18 mod 1 = 0

• ⇒ There’s a flow dependence: S1 −→ S2.

• The only values that satisfy the dependence are Id = 2 and Iu = 10: 19 ∗ 2 + 3 = 41 = 2 ∗ 10 + 21. If
the loop had gone from 3 to 9, there would be no dependence! The gcd-test doesn’t catch this.

23 The GCD Test – Example III

FOR I := 1 TO 10 DO

S1: A[8 ∗ i + 3] := · · ·
S2: · · · := A[2 ∗ i + 1]

ENDFOR

• c ∗ Id + j = d ∗ Iu + k only if gcd(c, d) evenly divides k − j, i.e. if (k − j) mod gcd(c, d) = 0.

• c = 8, j = 3, d = 2, k = 1.

• (1 − 3) mod gcd(8, 2) = −2 mod 2 = 0

• ⇒ There’s a flow dependence: S1 −→ S2.

• We knew this already, from the example in a previous slide. Id = 1, Iu = 5 ⇒ 8∗Id+3 = 11 = 2∗Iu+1.

7

24

Dependence Distance

25 Dependence Directions I

FOR I := 2 TO 10 DO

S1: A[I] := B[I] + C[I];

S2: D[I] := A[I] + 10;

ENDFOR

• On each iteration, S1 will assign a value to A[i], and S2 will use it.

• Therefore, there’s a flow dependence from S1 to S2: S1 δ S2.

• We say that the data-dependence direction for this dependence is = , since the dependence stays
within one iteration.

• We write: S1 δ= S2.

26 Dependence Directions II

FOR I := 2 TO 10 DO

S1: A[I] := B[I] + C[I];

S2: D[I] := A[I-1] + 10;

ENDFOR

• On each iteration, S1 will assign a value to A[i], and S2 will use this value in the next iteration.

• E.g., in iteration 3, S1 assigns a value to A[3]. This value is used by S2 in iteration 4.

• Therefore, there’s a flow dependence from S1 to S2: S1 δ S2.

• We say that the data-dependence direction for this dependence is < , since the dependence flows from
i-1 to i.

• We write: S1 δ< S2.

27 Dependence Directions III

FOR I := 2 TO 10 DO

S1: A[I] := B[I] + C[I];

S2: D[I] := A[I+1] + 10;

ENDFOR

• On each iteration, S2 will use a value that will be overwritten by S1 in the next iteration.

• E.g., in iteration 3, S2 uses the value in A[4]. This value is overwritten by S1 in iteration 4.

• Therefore, there’s a anti dependence from S2 to S1: S2 δ S1.

• We say that the data-dependence direction for this dependence is < , since the dependence flows from
i to i+1.

• We write: S2 δ< S1.

8

28

Loop Nests

29 Loop Nests I

FOR I := 0 TO 9 DO

FOR J := 1 TO 10 DO

S1: · · · := A[I, J − 1]
S2: A[I, J] := · · ·

ENDFOR

ENDFOR

• With nested loops the data-dependence directions become vectors. There is one element per loop in
the nest.

• In the loop above there is a flow dependence S2 −→ S1 since the element being assigned by S2 in
iteration I (A[I, J]) will be used by S1 in the next iteration.

• This dependence is carried by the J loop.

• We write: S2 δ=,< S1.

30 Loop Nests II – Example

FOR I := 1 TO N DO

FOR J := 2 TO N DO

S1: A[I, J] := A[I, J − 1] + B[I, J];

S2: C[I, J] := A[I, J] + D[I + 1, J];

S3: D[I, J] := 0.1;

ENDFOR

ENDFOR

S1 δ=,< S1 S1 assigns a value to A[I, J] in iteration (I, J) that will be used by S1 in the next iteration

(I, J + 1). The dependence is carried by the J loop.

S1 δ=,= S2 S1 assigns a value to A[I, J] in iteration (I, J) that will be used by S2 in the same iteration.

S2 δ<,= S3 S2 uses the value of D[I + 1, J] in iteration (I, J). It will be overwritten by S3 in the next

I-iteration. The I-loop carries the dependence.

31

Model

32 A Model of Dependencies

• Suppose we have the following loop-nest:

9

for i:=1 to x do

for j := 1 to y do

s1: A[a*i+b*j+c,d*i+e*j+f] = · · ·
s2 : · · · = A[g*i’+h*j’+k,l*i’+m*j’+n]

• Then there is a dependency between statements s1 and s2 if there exist iterations (i, j) and (i′, j′),
such that

a ∗ i + b ∗ j + c = g ∗ i′ + h ∗ j′ + k

d ∗ i + e ∗ j + f = l ∗ i′ + m ∗ j′ + n

or

a ∗ i − g ∗ i′ + b ∗ j − h ∗ j′ = k − c

d ∗ i − l ∗ i′ + e ∗ j − m ∗ j′ = n − f

• These equations can easily be generalized to deeper loop nests and higher-dimensional arrays.

33 A Model of Dependencies

• This is equivalent to an integer programming problem (a system of linear equations with all integer
variables and constants) in four variables:

[

a −g b −h

d −l e −m

]

×

i

i′

j

j′

=

[

k − c

n − f

]

• If the loop bounds are known we get some additional constraints:

1 ≤ i ≤ x, 1 ≤ i′ ≤ x,

1 ≤ j ≤ y, 1 ≤ j′ ≤ y

• In other words, to solve this dependency problem we look for integers i, i′, j, j′ such that the equation
and constraints above are satisfied.

34

Homework

35 Exam I/a (415.730/96)

1. What is the gcd-test? What do we mean when we say that the gcd-test is conservative?

2. List the data dependencies (−→,−→+ ,−→◦) for the loops below.

10

FOR i := 1 TO 7 DO

S1: · · · := A[2 ∗ i + 1];
S2: · · · := A[4 ∗ i];

S3: A[8 ∗ i + 3] := · · ·;
END;

FOR i := 1 TO n DO

S1: X := A[2 ∗ i] + 5;

S2: A[2 ∗ i + 1] := X + B[i + 7];
S3: A[i + 5] := C[10 ∗ i];

S4: B[i + 10] := C[12 ∗ i] + 13;

END;

36 Exam II (415.730/97)

• Consider the following loop:

FOR i := 1 TO n DO

S1: B[i] := C[i − 1] * 2;

S2: A[i] := A[i] + B[i − 1];
S3: D[i] := C[i] * 3;

S4: C[i] := B[i − 1] + 5;

ENDFOR

1. List the data dependencies for the loop. For each dependence indicate whether it is a flow- (−→),
anti- (−→+), or output-dependence (−→◦), and whether it is a loop-carried dependence or not.

2. Show the data dependence graph for the loop.

37

Summary

38 Readings and References

• Padua & Wolfe, Advanced Compiler Optimizations for Supercomputers, CACM, Dec 1996, Vol 29, No
12, pp. 1184–1187, http://www.acm.org/pubs/citations/journals/cacm/1986-29-12/p1184-padua/.

39 Summary I

• Dependence analysis is an important part of any parallelizing compiler. In general, it’s a very diffi-
cult problem, but, fortunately, most programs have very simple index expressions that can be easily
analyzed.

• Most compilers will try to do a good job on common loops, rather than a half-hearted job on all loops.

• Integer programming is NP-complete.

11

40 Summary II

• When faced with a loop

FOR i := From TO To DO

S1: A[f(i)] := · · ·
S2: · · · := A[g(i)]

ENDFOR

the compiler will try to determine if there are any index values I, J for which f(I) = g(J). A number
of cases can occur:

1. The compiler decides that f(i) and g(i) are too complicated to analyze. ⇒ Run the loop serially.

2. The compiler decides that f(i) and g(i) are very simple (e.g. f(i)=i, f(i)=c*i, f(i)=i+c,

f(i)=c*i+d), and does the analysis using some built-in pattern matching rules. ⇒ Run the loop
in parallel or serially, depending on the outcome.

41 Summary III

• contd.

3. The compiler applies some advanced method to determine the dependence. ⇒ Run the loop in
parallel or serially, depending on the outcome.

• Most compilers use pattern-matching techniques to look for important and common constructs, such
as reductions (sums, products, min & max of vectors).

• The simplest analysis of all is a name analysis: If every identifier in the loop occurs only once, there
are no dependencies, and the loop can be trivially parallelized:

FOR i := From TO To DO

S1: A[f(i)] := B[g(i)]+C[h(i)];
S2: D[j(i)] := E[k(i)]*F[m(i)];

ENDFOR

12

