
CSc 553 — Principles of Compilation

34 : Memory Hierarchy Optimization

Christian Collberg

Department of Computer Science

University of Arizona

collberg@gmail.com

Copyright c© 2011 Christian Collberg

April 21, 2011

1

Memory Hierarchy

2 Memory Hierarchy I

• Memory is organized hierarchically. Storage at the bottom of the hierarchy is large and slow. Storage
at the top of the hierarchy is small and fast.

• Accessing a memory word X could result in the following: Swap in VM page containing X → Load

memory line containing X into E-cache → Load cache line containing X into D-cache → Load X into

register.

• Notice that when moving X up the hierarchy, we don’t just move X but the entire block on which X

resides.

• We should try to organize our code so that it makes efficient use of every datum moved up the hierarchy.

1



3

Size
(Bytes)

Register File

BlkSz=8b

Primary Memory

Virtual Memory Pages

E−Cache

D−cacheI−cache

BlkSz=32b BlkSz=16b

BlkSz=16b

BlkSz=8k

BlkSz=64b

Access
Time

(Cycles)

1010
6

10
3

10
5

10
8

10
12

1

10
2

10
6

2

4

Virtual Memory Pages

Register File

Primary Memory

E−Cache

D−cacheI−cache

X:

X:

X:

X:

X:

5 Memory Hierarchy IV

• We will see various compiler transformations on loops that will change the data access pattern to make
efficient use of loaded data. Often, the idea is to turn a stride-n access pattern (which only uses one
word from each cache line per loop iteration), into a stride-1 access.

2



• Loading code is no different from loading data. The I-cache is of limited size, and we should make
efficient use of the instructions that are loaded. Ideally, we want loop bodies to fit neatly into the I-
cache. Compiler transforms can break large loops into smaller ones, and merge small loops into larger
ones.

6 Memory Hierarchy V

• We also want to make efficient use of virtual memory. We can sort the procedures of a program so
that procedures that are likely to call each other fall on the same VM page.

• Another technique is to reduce the size of procedures by splitting them into two components: the
code that is likely to execute all the time (the main-line code) and the infrequently-executed code
(e.g. exception-handling code). The primary components of procedures are grouped together, and the
secondary components are grouped together.

7

Transformations

8 Loop Transformations

• We’ll look at transformations on FOR-loops that can affect memory hierarchy utilization. The legality
of these transformations depends on the loops’ data dependencies.

• Some of these transformations are also used by parallelizing compilers. In general, a loop can’t be
parallelized (reorganized to be run on a multiprocessor machine) if it has any data dependencies. Some
transformations shown here can break such dependencies so that the loop can be parallelized.

• Some of the loop transformations do not improve performance by themselves, but reorganize the loops
so that they are amenable to other optimizing loop transformations.

9

Loop Fission

10 Loop Fission I

• Loop Fission breaks a loop into two or more independent loops. Also known as loop distribution.

• The smaller loops may fit better in the I-cache, may have better D-cache utilization, or can more easily
be parallelized.

• Can the loop below be broken into smaller loops?

FOR I := 1 TO N DO

S1: A[I] := A[I] + B[I − 1];
S2: B[I] := C[I − 1] * X + V;

S3: C[I] := 1/B[I];

S4: D[I] := sqrt(C[I]);

ENDFOR

3



11 Loop Fission II

Dependencies

S2 δ< S1 S2 assigns a value to B[I] that will be used by S1 in the next iteration.

S2 δ= S3 S2 assigns a value to B[I] that will be used by S3 in the same iteration.

S3 δ< S2 S3 assigns a value to C[I] that will be used by S3 in the next iteration.

S3 δ= S4 S3 assigns a value to C[I] that will be used by S4 in the same iteration.

FOR I := 1 TO N DO

S1: A[I]:=A[I]+B[I − 1];
S2: B[I]:=C[I − 1]*X+V;
S3: C[I]:=1/B[I];

S4: D[I]:=sqrt(C[I]);

ENDFOR

1

01

0

S2

S3

S1

S4

12 Loop Fission III

• If there are no cycles in the dependency graph, we can split the loop into separate loops for each
statement.

• The loops must be ordered in a topological order according to the graph.

• If the graph has cycles, the statements in each strongly connected component must be in the same
loop.

• Two nodes n1 and n2 of a graph G are in the same strongly connected component C, if there is a path
from n1 to n2 and a path from n2 to n1.

FOR I := 1 TO N DO

S1: A[I]:=A[I]+B[I − 1];
S2: B[I]:=C[I − 1]*X+V;
S3: C[I]:=1/B[I];

S4: D[I]:=sqrt(C[I]);

ENDFOR

01

0

1

S3

S1

S4

S2

13 Loop Fission IV

• The dependence graph has 3 strongly connected components ([S1], [S2, S3], [S4]) ⇒ the loop can be
split into 3 separate loops.

• Since the graph has edges [S2, S3] → [S1] and [S2, S3] → [S4], the [S2, S3] loop has to precede the other
loops.

FOR J := 1 TO N DO

S2: B[J] := C[J − 1] * X + V;

S3: C[J] := 1/B[J];

ENDFOR;

FOR J := 1 TO N DO

S1: A[J] := A[J] + B[J − 1];

4



ENDFOR;

FOR J := 1 TO N DO

S4: D[J] := sqrt(C[J]);

ENDFOR;

I := N;

14

Loop Fusion

15 Loop Fusion I

• Loop fusion merges two adjacent loops.

• Fusion can reduce loop overhead, increase instruction parallellism, improve locality, and improve load
balance.

Original Loops

FOR i := 1 TO N DO

S1: A[i] := A[i] + k;

ENDFOR;

FOR i := 1 TO N DO

S2: B[i + 1] := B[i] + A[i];

ENDFOR;

Loops After Fusion

FOR i := 1 TO N DO

S1: A[i] := A[i] + k;

S2: B[i + 1] := B[i] + A[i];

ENDFOR;

16 Loop Fusion II

• The loops must have the same loop bounds.

• Two loops cannot be fused if ∃ a statement S1 in the 1st loop and a statement S2 in the 2nd loop,
such that ∃ a dependence S2 ⇒ S1 in the fused loop.

FOR i := 1 TO N DO

S1: A[i] := A[i] + k;

ENDFOR;

FOR i := 1 TO N DO

S2: B[i + 1] := B[i] + A[i + 1];
ENDFOR;

⇓ Illegal!

FOR i := 1 TO N DO

S1: A[i] := A[i] + k;

S2: B[i + 1] := B[i] + A[i + 1];
ENDFOR;

5



17

Loop Reversal

18 Loop Reversal I

• Loop reversal runs a loop backwards.

• Reversal is legal only when there are no loop-carried dependence relations.

• Reversal can help with loop fusion. The loops below cannot be directly fused, since there would be a
forward dependence between S2 and S3 (eg. for i = 5, S3 would use the old value of C[6] rather than
the new value computed by S2.).

Original Loops

FOR i := 1 TO N DO

S1: A[i] := B[i] + 1;

S2: C[i] := A[i] / 2;

ENDFOR;

FOR i := 1 TO N DO

S3: D[i] := 1 / C[i + 1];
ENDFOR;

19 Loop Reversal II

• Neither loop has any loop-carried dependencies, hence they can both be reversed. The reversed loops
can be fused.

⇓ Reverse!

FOR i := N TO 1 DO

S1: A[i] := B[i] + 1;

S2: C[i] := A[i] / 2;

ENDFOR;

FOR i := N TO 1 DO

S3: D[i] := 1 / C[i + 1];
ENDFOR;

⇓ Fuse!

FOR i := N TO 1 DO

S1: A[i] := B[i] + 1;

S2: C[i] := A[i] / 2;

S3: D[i] := 1 / C[i + 1];
ENDFOR;

20

Loop Unswitching

6



21 Loop Unswitching I

• Conditional statements within a loop can reduce I-cache utilization and prevent parallelization. We
can break out the if-statement and replicate the loops, to get two loops without any branches.

• If the boolean expression E is loop invariant then we can extract it out of the loop.

Original Loop

FOR i := 2 TO N DO

S1: A[i] := A[i] + k;

IF E THEN

S2: B[i] := A[i] + C[i];

ELSE

S3: B[i] := A[i − 1] + B[i − 1];
ENDIF;

ENDFOR;

22 Loop Unswitching II

• If E could possibly throw an exception then we must guard it with a test in case the loop is never
executed.

Unswitched Loop

IF N > 1 THEN

IF E THEN

FOR i := 2 TO N DO

S1: A[i] := A[i] + k;

S2: B[i] := A[i] + C[i];

ENDFOR;

ELSE

FOR i := 2 TO N DO

S1: A[i] := A[i] + k;

S3: B[i] := A[i − 1] + B[i − 1];
ENDFOR;

ENDIF;

ENDIF;

23

Loop Peeling

24 Loop Peeling I

• To peel a loop we unroll the first (or last) few iterations.

• Peeling can remove dependencies created by the first (or last) few iterations of a loop. It can also help
with loop fusion by matching the loop bounds of adjacent loops.

• The first loop below can not be parallelized since there is a flow dependence between iteration i = 2
and iterations i = 3, · · ·n.

7



Original Loops

FOR i := 2 TO N DO

S1: B[i] := B[i] + B[2];
ENDFOR;

FOR i := 3 TO N DO

S2: A[i] := A[i] + k;

ENDFOR;

25

⇓ Peel!

IF N >= 2 THEN

B[2] := B[2] + B[2];
ENDIF;

FOR i := 3 TO N DO

S1: B[i] := B[i] + B[2];
ENDFOR;

FOR i := 3 TO N DO

S2: A[i] := A[i] + k;

ENDFOR;

⇓ Fuse!

IF N >= 2 THEN

B[2] := B[2] + B[2];
ENDIF;

FOR i := 3 TO N DO

S1: B[i] := B[i] + B[2];
S2: A[i] := A[i] + k;

ENDFOR;

26

Loop Normalization

27 Loop Normalization I

• Normalization converts all loops so that the induction variable is initially 1 (or 0), and is incremented
by 1 on each iteration.

• Normalization can help other transformations, such as loop fusion and peeling.

Original Loops

FOR i := 1 TO N DO

S1: A[i] := A[i] + k;

ENDFOR;

FOR i := 2 TO N+1 DO

S2: B[i] := A[i − 1] + B[i];

ENDFOR;

8



28

⇓ Normalize!

FOR i := 1 TO N DO

S1: A[i] := A[i] + k;

ENDFOR;

FOR i := 1 TO N DO

S2: B[i + 1] := A[i] + B[i + 1];
ENDFOR;

⇓ Fuse!

FOR i := 1 TO N DO

S1: A[i] := A[i] + k;

S2: B[i + 1] := A[i] + B[i + 1];
ENDFOR;

29

Loop Interchange

30 Loop Interchange I

• Loop interchange moves an inner loop outwards in a loop nest. It can improve locality (and hence
cache performance) by turning a stride-n access pattern into stride-1:

Original Loop

FOR i := 1 TO N DO

FOR j := 1 TO N DO

B[i] := B[i] + A[j, i];

ENDFOR;

ENDFOR;

Interchanged Loop

FOR j := 1 TO N DO

FOR i := 1 TO N DO

B[i] := B[i] + A[j, i];

ENDFOR;

ENDFOR;

9



31

I

A[4,2]=... A[4,3]=...

A[3,1]=... A[3,2]=... A[3,3]=...

A[2,1]=... A[2,2]=... A[2,3]=...

A[1,1] A[1,2] A[1,3]

A[4,1]=... A[4,2]=... A[4,3]=...

A[3,1]=... A[3,2]=... A[3,3]=...

A[2,1]=... A[2,2]=... A[2,3]=...

A[1,1] A[1,2] A[1,3]

O
R
I
G
I
N
A
L

I
N
T
E
R
C
H
A
N
G
E

J

J

I

A[4,1]=...

32 Loop Interchange III

• A loop nest of two loops can be interchanged only if there does not exist a loop dependence vector of
the form (<, >).

• The loops in the loop nest below can’t be interchanged. The next slide shows the order in which the
array elements are assigned (dashed arrows); first in the original nest and then in the interchanged
nest. Solid arrows show dependencies.

This Loop Nest Can’t be Interchanged

FOR i := 2 TO N DO

FOR j := 1 TO N-1 DO

A[i, j] := A[i − 1, i + 1];
ENDFOR;

ENDFOR;

33

• In the interchanged loop A[2,3] is needed to compute A[3,2]. At that time A[2,3] has not been
computed.

10



J

A[4,2]=... A[4,3]=...

A[3,1]=... A[3,2]=... A[3,3]=...

A[2,1]=... A[2,2]=... A[2,3]=...

A[1,1] A[1,2] A[1,3]

A[4,1]=... A[4,2]=... A[4,3]=...

A[3,1]=... A[3,2]=... A[3,3]=...

A[2,1]=... A[2,2]=... A[2,3]=...

A[1,1] A[1,2] A[1,3]

O
R
I
G
I
N
A
L

I
N
T
E
R
C
H
A
N
G
E

I

I

J

A[4,1]=...

34

Loop Blocking

35 Loop Blocking I

• Also known as loop tiling.

• The loop below assigns the transpose of B to A. Access to A is stride-1, access to B is stride-n. This
makes for poor locality, and the loops will perform poorly on cached machines (unless the arrays fit in
the cache).

• Loop blocking improves locality by iterating over a sub-rectangle of the iteration space.

• A pair of adjacent loops can be blocked if they can legally be interchanged.

FOR i := 1 TO 8 DO

FOR j := 1 TO 8 DO

A[i, j] := B[j, i];

ENDFOR;

ENDFOR;

36 Loop Blocking II

• To block a loop FOR i = lo TO hi DO we select the following constants:

ts The block size.

to The block offset (0 ≤ to < ts). Each block will start at an iteration such that i mod ts = to.

Blocked Loop

11



FOR Ti := ⌊(lo-to)/ts)⌋*ts+to
TO ⌊(hi-to)/ts)⌋*ts+to BY ts DO

FOR i := max(Ti,lo) TO min(Ti+ts-1,hi) DO

37 Loop Blocking III

FOR i := 1 TO 8 DO

FOR j := 1 TO 8 DO

A[i, j] := B[j, i];

ENDFOR;

ENDFOR;

⇓ Block!

FOR Ti := 1 TO 8 BY 2 DO

FOR Tj := 1 TO 8 BY 2 DO

FOR i := Ti TO min(Ti+1, 8) DO

FOR j := Tj TO min(Tj+1, 8) DO

A[i, j] := B[j, i];

ENDFOR;

ENDFOR;

ENDFOR;

ENDFOR;

38 Loop Blocking IV (A) – Original Loop

I

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

B

J

A

J

I

12



39 Loop Blocking IV (B) – Blocked Loop

I

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

B

J

I

A

J

40 Loop Blocking IV (B) – Block Movements

A

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

B
41

Procedure Sorting

42 Procedure Sorting I

• The simplest way to increase VM performance is to sort the procedures of a program so that routines
that are likely to call each other will fall on the same VM page.

• At link-time (or after link-time), build an un-directed call graph. Label each edge P → Q with the
frequency of calls between P and Q.

• Collapse the graph in stages. At each stage select the edge P
k
→ Q with max weight k, merge nodes P

and Q, collapse edges into P and Q into a single edge (adding the edge weights).

• Nodes that are merged are put on the same page.

13



43 Procedure Sorting – Example (a)

55
50

20

100

90 32

40

40

50

3

5

50

20

90 32

40

40

3

P1 P2

P3 P4

P6

P7

P5

P8

P1

P3

P6

P7

P5

P8

P2

P4

44 Procedure Sorting – Example (b)

40

90

3

50

40

40

3

55

52

50

40

52

3
40

40
3

P2

P4

P5

P3

P6

P1

P7 P8

P1

P7

P5

P8

P3

P6

P2

P4

P1

P3

P6

P2

P4

P7 P8

P5

P2

P4

P5

P3

P6

P7 P8

P1

45 Procedure Sorting – Example (c)

3

P2

P4

P5

P3

P6

P1

P7 P8

P2

P4

P5

P3

P6

P7 P8

P1

• The final, single, node contains: [[P1, [P3, P6], [P5, [P2, P4]], [P7, P8]].

• We arrange the procedures in the order P1, P3, P6, P5, P2, P4, P7, P8.

46

Homework

47 Exam Problem I (415.730/97)

• Consider the following loop:

14



FOR i := 1 TO n DO

S1: B[i] := C[i − 1] * 2;

S2: A[i] := A[i] + B[i − 1];
S3: D[i] := C[i] * 3;

S4: C[i] := B[i − 1] + 5;

ENDFOR

1. List the data dependencies for the loop. For each dependence indicate whether it is a flow- (−→),
anti- (−→+ ), or output-dependence (−→◦ ), and whether it is a loop-carried dependence or not.

2. Apply loop fission to the loop. Show the resulting loops after the transformation.

48

Summary

49 References

• David Bacon, Susan Graham, Oliver Sharp, Compiler Transformations for High-Performance Com-

puting, Computing Surveys, No. 4, pp. 345–420, Dec, 1994.1

• Steven Muchnick, Advanced Compiler Design & Implementation, Chapter 20, pp. 669–704.

• Hennessy, Patterson, Computer Architecture – A Quantitative Approach, Section 1.7.

50 Summary

• Compilers use a number of loop transformation techniques to convert loops to parallelizable form.

• The same transformations can also be used to improve memory hierarchy utilization of scientific (nu-
merical ) codes.

• Nested loops can be interchanged, two adjacent loops can be joined into one (loop fusion), a single loop
can be split into several loops (loop fission), etc.

1Much of the material in this lecture has been shamelessly stolen from this article.

15


