
CSc 553 — Principles of Compilation

36 : Parallelizing Compilers I

Christian Collberg

Department of Computer Science

University of Arizona

collberg@gmail.com

Copyright c© 2011 Christian Collberg

April 20, 2011

1

Parallelizing Compilers

2 Parallelizing Compilers I

• Scientists/engineers want to speed up old FORTRAN programs by running them on multiprocessors.
They don’t want to rewrite the code to make explicit use of the available parallelism.

• Instead, they use Parallelizing/Concurrentizing/Vectorizing compilers that convert sequential
programs to parallel form.

FORTRAN
program with
parallel
directives

FORTRAN
Compiler

Object
code file

Dusty Deck
FORTRAN
Program

Compiler
Parallelizing

Linker

Binary
Parallel
Program

Parallel
processing
library

1

3 Parallelizing Compilers II

Can be

Source
Code

FOR EACH LOOP DO

Run loop
serially

No

Parsing
Semantic
Analysis

A parallel−
izing
compiler

YesMaybe
parallel−

Reorganize
loop and
try again.

Convert

form

loop to
parallel

ized?

• Concurrentizing compilers convert sequential programs to run on a shared memory multiprocessor.
The resulting code uses a Master/Slave paradigm. The Master process executes sequential code (not
all code can be parallelized), and starts up slave processors to execute (parts of) loops.

4

Typical Concurrent
ExecutionSequential region

#1 executed by
the Master

Master creates
workers (Slaves)

Master waits for

Slaves to complete

Parallel
region #2

Sequential
region #2

Sequential
region #3

Slave #1
executes

Slave #2
executes executes

...

Master wakes up
Slaves and starts
parallel region #1

Slave #n

2

5 Concurrentizing Compilers I

Sequential Program After parallelization

if x < 5 then

y := 17

for i := 1 to 100 do

A[i] := i*2

end

x := 15

⇒ # pragma sequential

if x < 5 then

y := 17

pragma parallel for-loop

for i := 1 to 100 do

A[i] := i*2

end

pragma sequential

x := 15

6 Concurrentizing Compilers II

Code for the Master

begin

CreateSlaves(10);

(* Slaves are now idle. *)

if x < 5 then y := 17

for i := 1 to 10 do

StartSlave(i, ForBody, (i − 1) ∗ 10 + 1, i ∗ 10)
end

WaitForSlaves();

(* Slaves are idle again. *)

x := 15;

end

PROCEDURE ForBody(From, To : INTEGER);

for i := From to To do A[i] := i*2 end

END ForBody;

7 Concurrentizing Compilers III

• While the slaves are working, the Master is idle. This is of course wasteful, so normally the Master
would schedule one set of iterations to itself.

• The Master could create a a new set of processes before each loop and then kill them off after the
loop is finished. On many systems this would be expensive. Instead the Master starts the program by
creating a set of processes and then ”parks” them (i.e. puts them to sleep). When a parallel region is
encountered, the Master wakes up the Slaves and hands them their workload.

• In the example, every Slave manipulates its own sub-array independently of the other processors. There
are no cache conflicts. Often not this easy.

8 Prescheduled Loops I

• Here’s a more detailed description of a prescheduled loop. A loop is prescheduled if each Slave is
given enough information when it is awakened to execute all of its iterations of the loop.

3

WorkingSlaves := NoOfSlaves + 1;

(* The Master also works. *)

InitMonitor(Lock);

ContinueAddress := LabelAfterLoop;

FOR i := 1 to NoOfSlaves DO

From := · · · ; To := · · · ;
StartSlave(i, ForBody, From, To);

END

ForBody(NoOfSlaves+1, · · ·);
LabelAfterLoop:

(* Master continues here. *)

9 Prescheduled Loops II (a)

PROCEDURE ForBody (From, To : int);

FOR i := From to To DO

A[i] := 2 * i;

END;

EnterMonitor(Lock);

WorkingSlaves := WorkingSlaves - 1;

IF WorkingsSlaves > 0 THEN

ExitMonitor(Lock);

WAIT;

END;

ExitMonitor(Lock);

goto ContinueAddress;

END

10 Prescheduled Loops II (b)

• Note: This is pseudo-code. The actual implementation would obviously depend on what kind of
support for thread creation & synchronization provided by the particular system.

4

11 Prescheduled Loops III

Memory

if ...
for i:=1 to 10 do

end
wait
x := 1

StartSlave(i)

x

Memory Bus

A[1],...,A[10]

for i:=1 to 10 do

end
sleep();

A[i] := i*2

CPU2 (Slave 1)

A[11],...,A[20]

CPU3 (Slave 2)

end
sleep();

A[i] := i*2
for i:=11 to 20 do

end
sleep();

A[i] := i*2

A[91],...,A[100]

for i:=91 to 100 do

CPU11 (Slave 10)

CPU1 (Master)

A[1],A[2],...

A[99],A[100]

A[10],A[11],...
....

x

12 Prescheduled Loops IV

• Block-scheduled loops assign the same number of iterations to each processor. This is OK if all
iterations perform the same amount of work.

• Consider this loop:

FOR i := 1 TO 1000 DO

IF i > 500 THEN

X := X + 1;

ELSE

FOR j := 1 to 100000 DO · · · END;

END;

END

If this loop was parallelized using block-scheduling, then some processors would be given a lot of work to
do, others little. Hence, some processors will finish early, and won’t contribute much to the processing.

13 Prescheduled Loops V

• cyclic scheduling is a variant of block-scheduling (which is what we’ve done so far).

• If we have N iterations to assign to P processes, block scheduling would assign ⌈N

P
⌉ consecutive

iterations to each processor. I.e., process 1 would get iterations 1 · · · ⌈N

P
⌉ − 1, process 2 iterations

⌈N

P
⌉ · · · 2⌈N

P
⌉, etc.

• Cyclic scheduling would instead assign every P th iteration to each processor.

5

P = 4 processors P1 · · ·P4, N = 12 iterations
Block Scheduling Cyclic Scheduling

P1 P2 P3 P4

1 4 7 10
2 5 8 11
3 6 9 12

P1 P2 P3 P4

1 2 3 4
5 6 7 8
9 10 11 12

14 Self-Scheduled Loops I

• Prescheduled loops are static, i.e. the scheduling is decided at compile-time.

• Self-scheduled loops are dynamic, they assign workloads to processors at runtime. A dynamic
scheduler assigns small amounts of work to each processor. When a processor finishes its task, it goes
back to the scheduler and asks for more work.

• Problems:

– There is overhead in the dynamic scheduler.

– Should the scheduler hand out big chunks of work (⇒ less scheduling overhead; higher risk of
load imbalance) or small chunks, e.g. single iterations (⇒ higher scheduling overhead; better load
balance)?

15 Self-Scheduled Loops II

• In this example of a self-scheduled loop, there are N iterations to be scheduled. CurrentIteration
holds the next iteration to be scheduled. Each Slaves tries to get work for itself, until all loops have
been executed.

WorkingSlaves := NoOfSlaves + 1;

(* The Master also works. *)

CurrentIteration := 1;

LastIteration := N;

ContinueAddress := LabelAfterLoop;

FOR i := 1 to NoOfSlaves DO

StartSlave(i, ForBody);

END

ForBody();

LabelAfterLoop:

(* Master continues here. *)

16

PROCEDURE ForBody ();

LOOP

EnterMonitor(Lock);

i := CurrentIteration;

IF i > LastIteration THEN EXIT;

CurrentIteration ++;

ExitMonitor(Lock);

A[i] := 2 * i;

ENDLOOP;

6

WorkingSlaves := WorkingSlaves - 1;

IF WorkingsSlave > 0 THEN

ExitMonitor(Lock);

WAIT;

END;

ExitMonitor(Lock);

goto ContinueAddress;

END

17 Self-Scheduled Loops IV

• Chunk Scheduling removes some overhead of single-iteration scheduling:

CurrentIteration:=1; LastIteration:=N; ChunkSize:=10;

(* same as before *)

PROCEDURE ForBody ();

LOOP

EnterMonitor(Lock);

i := CurrentIteration;

IF i > LastIteration THEN EXIT;

CurrentIteration += ChunkSize;

ExitMonitor(Lock);

FOR k := i TO i + ChunkSize DO

A[k] := 2 * k; ENDFOR;

ENDLOOP;

(* same as before *)

END

18 Self-Scheduled Loops V

• The problem with chunk scheduling is that one Slave my wind up with a more expensive chunk than
the others.

• Guided Self-Scheduling tries to alleviate this through tapering; the chunk-sizes get smaller towards

the end of the loop. Specifically, the chunk-size is
remaining iterations

2∗# of processors .

RemainingIters := N;

PROCEDURE ForBody ();

LOOP i := CurrentIteration;

ChunkSize := RemainingIters/(2*WorkingSlaves);

RemainingIters -= ChunkSize;

IF i > LastIteration THEN EXIT;

CurrentIteration += ChunkSize;

FOR k := i TO i + ChunkSize · · ·
ENDLOOP;

19 Self-Scheduled Loops VI

• One problem with guided self-scheduling is the overhead of the scheduling operations themselves.

7

• Factored Scheduling computes the size of a batch of chunks. Each batch is a fraction 1

F
of the

remaining work. Each chunk is 1

of processors of that batch.

• Simple Factoring sets F = 2.

RemainingIters := N;

· · ·
ChunkSize := RemainingIters/(WorkingSlaves * F);

RemainingIters := RemainingIters -

WorkingSlaves * ChunkSize;

20 Self-Scheduled Loops VII

• Compare block scheduling, chunk self-scheduling, guided self-scheduling, and factoring when scheduling
100 iterations on 4 processors. Use chunk-size=10 and F = 2.

block 25 25 25 25
chunk 10 10 10 10 10 10 10 10 10 10
guided 13 11 10 9 8 7 6 5 4 4 3 3 3 2 2 2 2 1 1 1 1 1 1
factor 13 13 13 13 6 6 6 6 3 3 3 3 2 2 2 2 1 1 1 1

• Note that guided self-scheduling has 23 scheduling operations, factoring only 5 (since it schedules 4
chunks at a time).

21

A Parallelizing Compiler

22 A Parallelizing Compiler I

• SGI’s IRIX Power C parallelizing compiler consists of two programs. pca inserts parallel directives

into the sequential C program. mpc converts this program into parallel form. cc compiles the

resulting program.

8

23

pca −list −cmp

mpc −Koutfile −64

Parallel C
Program cc −64

Multi−
processing
library
libmp.a

C program
with parallel
directives
(#pragma)

User may insert
own directives
here!

Listing
File

cpp Sequential
C Program

24 A Parallelizing Compiler II

• /usr/lib/cpp mm.c > mm1.c; /usr/lib/pca -unroll=1 -cmp -list mm1.c

#define N 600

double A[N][N],B[N][N],C[N][N];

main () {
long i,j,k;

for(i=1;i<=N; i++) {
for(j=1;j<=N; j++) {

A[i][j] = 0.0;

for(k=1;k<=N; k++)

A[i][j] = A[i][j]+B[i][k]*C[k][j];

}
}

}

25

double A[600][600],B[600][600],C[600][600];

main () {
long i,j,k;

#pragma parallel shared(A, B, C)

local(i, j, Kdd1, k)

{
#pragma pfor iterate(i=1;600;1)

for (i = 1; i<=600; i++)

for (j = 1; j<=600; j++)

A[i][j] = 0.e0;

#pragma synchronize

#pragma pfor iterate(i=1;600;1)

for (i = 1; i<=600; i++)

9

for (k = 1; k<=600; k++) {
Kdd1 = B[i][k];

for (j = 1; j<=600; j++)

A[i][j]=A[i][j]+ Kdd1*C[k][j];

}
}

}

26 A Parallelizing Compiler IV

• pca analyses the C-code and inserts #pragmas which are then used by mpc.

• #pragma parallel starts a parallel region. #pragma pFor starts a parallel for loop. #pragma synchronize

is a classic barrier construct.

• The next slide shows the explanation produced by the compiler.

27 A Parallelizing Compiler IV

for i

Line:8 Unrolling of this loop was not

done because size is ok asis.

Original loop split into sub-loops

1. Concurrent

2. Concurrent

for j

Original loop split into sub-loops

1. Scalar Already in a parallel loop.

2. Scalar Already in a parallel loop.

for k

1. Scalar Already in a parallel loop.

Optimization Summary

1 loops concurrentized

2 preferred scalar mode

28

Summary

29 Summary I

• Read:

Concurrentization: Michael Wolfe, High Performance Compilers for Parallel Computing, pp. 385–
392.

• A concurrentizing compiler should

1. find loops that can be parallelized,

2. reorganize remaining loops so that they can also be parallelized,

10

3. devise the best scheduling policy for each loop. We’ve seen

static (pre) scheduling: block, cyclic

dynamic (self) scheduling: single iteration, chunk, guided, factoring,

4. explain to the user why some loops could not be parallelized.

30 Summary II

• Static scheduling works well when the cost of each iteration can be determined at compile time. This
is true of most scientific codes since these typically perform simple arithmetic on each element of an
array.

• Dynamic scheduling handles loops where the cost of each iteration can’t be determined at compile
time. Usually this is because the loop contains an IF-statement or a function call.

• Most concurrentizing compilers only parallelize outermost loops.

31 Summary III

• Compilers for parallel vector machines (such as the Cray J916) will concurrentize outer loops and
vectorize inner loops. In the loop-nest below, for example, the j loop would be converted to vector
operations, and the i loop would be scheduled over the available processors:

FOR i := 1 TO 1000 DO

FOR j := 1 TO 64 DO

A[i,j] := A[i,j]*2

32

Homework

33 Homework I

• Compare block scheduling, chunk self-scheduling, guided self-scheduling, and factoring when scheduling
120 iterations on 6 processors. Use chunk-size=12 and F = 2.

block

chunk

guided

factor

11

