
CSc 553 — Principles of Compilation

37 : Parallelizing Compilers II

Christian Collberg

Department of Computer Science

University of Arizona

collberg@gmail.com

Copyright c© 2011 Christian Collberg

April 20, 2011

1 An Example (a)

FOR i := 2 TO 7 DO

a[i] := a[i]+c; b[i] := a[i-1]*b[i];

i Time Statement

2 1© a[2]:=a[2]+c

2© b[2]:=a[1]*b[2]

3 3© a[3]:=a[3]+c

4© b[3]:=a[2]*b[3]

4 5© a[4]:=a[4]+c

6© b[4]:=a[3]*b[4]

5 7© a[5]:=a[5]+c

8© b[5]:=a[4]*b[5]

6 9© a[6]:=a[6]+c

A© b[6]:=a[5]*b[6]

7 B© a[7]:=a[7]+c

C© b[7]:=a[6]*b[7]

2 An Example (b)

• Schedule the iterations of the following loop onto three CPUs (P1, P2, P3) using cyclic scheduling.

FOR i := 2 TO 7 DO

S1: a[i] := a[i] + c;

S2: b[i] := a[i-1]*b[i];

ENDFOR

1

CPU i S1 S2

P1 2 a[2]:=a[2]+c b[2]:=a[1]*b[2]

5 a[5]:=a[5]+c b[5]:=a[4]*b[5]

P2 3 a[3]:=a[3]+c b[3]:=a[2]*b[3]

6 a[6]:=a[6]+c b[6]:=a[5]*b[6]

P3 4 a[4]:=a[4]+c b[4]:=a[3]*b[4]

7 a[7]:=a[7]+c b[7]:=a[6]*b[7]

3 An Example (c)

• The three CPUs run asynchronously at different speeds. So, when P2 is executing b[6]:=a[5]*b[6]

at time T=8, P1 has yet to execute a[5]:=a[5]+c .

• Hence, P2 will be using the old (wrong) value of a[5].

of a[5]!

a[2]:=a[2]+c

b[2]:=a[1]*b[2]

T=9

T=1

T=7

a[4]:=a[4]+c

b[4]:=a[3]*b[4]

T=2

T=4

T=8

T=5

b[3]:=a[2]*b[3]

a[6]:=a[6]+c

b[6]:=a[5]*b[6]

a[3]:=a[3]+c

T=3

T=6 Wrong value

a[5]:=a[5]+c

P1

P3

P2

4 An Example (d)

• Statement i/S1 : a[i]:=a[i]+c must run before statement i + 1/S2 : b[i]:=a[i-1]*b[i] in the

next iteration.

C©

1©

3©

5©

7©

9©

B©

2©

4©

6©

8©

A©

i = 7/S2 : b[7]:=a[6]*b[7]

i = 3/S2 : b[3]:=a[2]*b[3]

i = 4/S1 : a[4]:=a[4]+c

i = 6/S2 : b[6]:=a[5]*b[6]

i = 5/S1 : a[5]:=a[5]+c

i = 4/S2 : b[4]:=a[3]*b[4]

i = 6/S1 : a[6]:=a[6]+c

i = 2/S2 : b[2]:=a[1]*b[2]

i = 7/S1 : a[7]:=a[7]+c

i = 5/S2 : b[5]:=a[4]*b[5]

i = 2/S1 : a[2]:=a[2]+c

i = 3/S1 : a[3]:=a[3]+c

5 Parallelizing Options I

• Approaches to fixing the problem:

2

1. Give up, and run the loop serially on one CPU.

2. Rewrite the loop to make it parallelizable.

3. Insert synchronization primitives.

Give up

• We should notify the programmer why the loop could not be parallelized, so maybe he/she can rewrite
it him/herself.

Rewrite the loop

FOR i := 2 TO 7 DO

S1: a[i] := a[i] + c;

ENDFOR;

FOR i := 2 TO 7 DO

S2: b[i] := a[i-1]*b[i];

ENDFOR

6 Parallelizing Options II

Synchronize w/ Event Counters

VAR ev : EventCounter;

FOR i := 2 TO 7 DO

S1: a[i] := a[i] + c;

advance(ev); await(ev, i-1)

S2: b[i] := a[i-1]*b[i];

ENDFOR

• await/advance implements an ordered critical section, a region of code that the Workers must
enter in some particular order.

• await/advance are implemented by means of an event counter, an integer protected by a lock.

• await(ev, i) sleeps until the event counter reaches i.

• advance(ev) increments the counter.

7 Parallelizing Options III

Synchronize w/ Vectors

VAR ev : SynchronizationVector;

FOR i := 2 TO 7 DO

S1: a[i] := a[i] + c;

ev[i] := 1;

IF i > 2 THEN

wait(ev[i-1])

ENDIF;

S2: b[i] := a[i-1]*b[i];

ENDFOR

3

• ev is a vector of bits, one per iteration. It is protected by a lock and initialized to all 0’s.

• wait(ev[i]) will sleep the process until ev[i]=1.

• Initialization of the vector can be expensive.

8

What does a real compiler do?

9 pca’s Choices I (a)

• Let’s see how pca treats this loop.

• pca -unroll=1 -cmp -lo=cklnps -list=l.l l.c

C Program in l.c

int i,n; double a[10000], b[10000];

main () {
for(i=2; i<=n; i++) {

a[i] = a[i] + 100.0;

b[i] = a[i-1]*b[i]; }}

Listing in l.l

for i

Original loop split into sub-loops

1. Concurrent

2. Concurrent

1 loops concurrentized

10 pca’s Choices I (b)

Parallelized program in l.m

int main() {
int K1, K3;

K3 = ((n - 1)>(0) ? (n - 1) : (0));

#pragma parallel if(n > 51) byvalue(n)

shared(a, b) local(K1) {
#pragma pfor iterate(K1=2;n-1;1)

for (K1 = 2; K1<=n; K1++)

a[K1] = a[K1] + 100.e0;

#pragma synchronize

#pragma pfor iterate(K1=2;n-1;1)

for (K1 = 2; K1<=n; K1++)

b[K1] = a[K1-1] * b[K1];

}
i = K3 + 2;

}

4

11 pca’s Choices II (a)

• Let’s try a slightly different loop....

C Program in d.c

for(i=2; i<=n; i++) {
a[i] = a[i+1] + 100.0;

b[i] = a[i-1]*b[i];

}

Listing in d.l

for i

Original loop split into sub-loops

1. Scalar

Data dependence involving this

line due to variable "a"

2. Concurrent

1 loops concurrentized

12 pca’s Choices II (b)

Parallelized program in d.m

for (K1 = 2; K1<=n; K1++)

a[K1] = a[K1+1] + 100.0;

#pragma parallel if(n > 102) byvalue(n)

shared(a, b) local(K1)

{
#pragma pfor iterate(K1=2;n-1;1)

for (K1 = 2; K1<=n; K1++)

b[K1] = a[K1-1] * b[K1];

}

• This time pca

1. split the loop in two subloops (like before),

2. parallelized the second subloop, and

3. gave up on the first subloop, executing it serially.

13

Concurrentization

14 Concurrentization

• A loop can be concurrentized iff all its data dependence directions are =.

• In other words, a loop can be concurrentized iff it has no loop carried data dependences.

5

• The I-loop below cannot be directly concurrentized. The loop dependences are S1 δ=,< S1, S1 δ=,= S2,
S2 δ<,= S3. Hence, the I-loop’s dependence directions are (=, =, <).

FOR I := 1 TO N DO

FOR J := 2 TO N DO

S1: A[I, J] := A[I, J − 1] + B[I, J];
S2: C[I, J] := A[I, J] + D[I + 1, J];
S3: D[I, J] := 0.1;

ENDFOR

ENDFOR

15 Exam I (415.730/96)

FOR i := 1 TO n DO

FOR j := 1 TO n DO

S1: A[i, j] := A[i, j − 1] + C;

END;

END;

1. Which of the dependencies are loop-carried?

2. Which of the loops can be directly concurrentized (i.e., run in parallel without any loop transformations
or extra synchronization)? Motivate your answer!

3. What is the difference between a pre-scheduled and a self-scheduled loop? Under what circumstances
should we prefer one over the other?

16 Readings and References

• Padua & Wolfe, Advanced Compiler Optimizations for Supercomputers, CACM, Dec 1996, Vol 29, No
12, pp. 1184–1187.

17 Summary I

• Dependence analysis is an important part of any parallelizing compiler. In general, it’s a very diffi-
cult problem, but, fortunately, most programs have very simple index expressions that can be easily
analyzed.

• Most compilers will try to do a good job on common loops, rather than a half-hearted job on all loops.

18 Summary II

• When faced with a loop

FOR i := From TO To DO

S1: A[f(i)] := · · ·
S2: · · · := A[g(i)]

ENDFOR

the compiler will try to determine if there are any index values I, J for which f(I) = g(J). A number
of cases can occur:

6

1. The compiler decides that f(i) and g(i) are too complicated to analyze. ⇒ Run the loop serially.

2. The compiler decides that f(i) and g(i) are very simple (e.g. f(i)=i, f(i)=c*i, f(i)=i+c,

f(i)=c*i+d), and does the analysis using some built-in pattern matching rules. ⇒ Run the loop
in parallel or serially, depending on the outcome.

7

