
CSc 553 — Principles of Compilation

8 : Heap Allocation

Christian Collberg

Department of Computer Science

University of Arizona

collberg@gmail.com

Copyright c© 2011 Christian Collberg

February 3, 2011

1

Introduction

2 Dynamic Memory Management

• The run-time system linked in with the generated code should contain routines for allocation/deallo-
cation of dynamic memory.

Pascal, C, C++, Modula-2 Explicit deallocation of dynamic memory only. I.e. the programmer is re-
quired to keep track of all allocated memory and when it’s safe to free it.

Eiffel Implicit deallocation only. Dynamic memory which is no longer used is recycled by the garbage
collector.

Ada Implicit or explicit deallocation (implementation defined).

Modula-3 Implicit and explicit deallocation (programmer’s choice).

3 Interface to Dynamic allocation

C, C++: char* malloc(size) and free(char*) are standard library routines.

Pascal: new(pointer var) and dispose(pointer var) are builtin standard procedures.

Java: new(class name) is a standard function.

LISP: cons creates new cells:

null

b

c null

a

b

c
’(b c) ’(a b c)

TailHead

(cons ’a ’(b c))

1



4

Explicit Deallocation

5 Explicit Deallocation

• Pascal’s new/dispose, Modula-2’s ALLOCATE/DEALLOCATE,C’s malloc/free, C++’s new/delete, Ada’s
new/unchecked deallocation (some implementations).

• Problem 1: Dangling references: p=malloc(); q=p; free(p);.

• Problem 2: Memory leaks, Heap fragmentation.

free list:

free list:

16

32

64

Large cell

Small cell

Heap:

128

4

512

8

6

DEFINITION MODULE Complex;

TYPE T;

PROCEDURE Create (Re, Im : REAL) : T;

PROCEDURE Add (A, B : T) : T;

END Complex.

IMPLEMENTATION MODULE Complex;

TYPE T = POINTER TO RECORD Re, Im : REAL; END;

PROCEDURE Create (Re, Im : REAL) : T;

BEGIN

NEW(x); x↑.Re := Re; x↑.Im := Im; RETURN x;

END Create;

PROCEDURE Add (A, B : T) : T;

BEGIN

NEW(x); x↑.Re := · · · ; x↑.Im := · · · ; RETURN x;

END Add;

END Complex;

7

MODULE Use;

IMPORT Complex;

VAR a,b,c,d : Complex.T;

BEGIN

a := Complex.Create(1.0, 2.4);

b := Complex.Create(3.4, 4.0);

c := Complex.Create(9.4, 6.6);

2



d := Complex.Add(a,Complex.Add(b,c));

END Use.

• Complex.Add(b, c) creates a new object which can never be reclaimed.

b+c

dba

1.0 3.4 9.4 12.8 13.8

2.4 4.0 6.6 10.6 13.0

H

e

a

p

c

8 Fragmentation

VAR a, b, c, d : POINTER TO ARRAY [1..1000] OF BYTE;

VAR x : POINTER TO ARRAY [1..2000] OF BYTE;

BEGIN

NEW(a); NEW(b); NEW(c); NEW(d);

DISPOSE(a); DISPOSE(c); NEW(x);

Heap

1000 1000 1000

c dba x

Free list:

• Without compaction the last allocation will fail, even though enough memory is available.

9

Implicit Deallocation

10 Implicit Deallocation

• LISP, Prolog – Equal-sized cells; No changes to old cells.

• Eiffel, Modula-3 – Different-sized cells; Frequent changes to old cells.

• When do we GC?

Stop-and-copy Perform a GC whenever we run out of heapspace (Modula-3).

Real-time/Incremental Perform a partial GC for each pointer assignment or new (Eiffel, Modula-3).

Concurrent Run the GC in a separate process.

11 Implicit Deallocation. . .

• Fragmentation – Compact the heap as a part of the GC, or only when the GC fails to return a large
enough block.

• Algorithms: Reference counts, Mark/ssweep, Copying, Generational.

3



12 Algorithm: Reference Counts

• An extra field is kept in each object containing a count of the number of pointers which point to the
object.

• Each time a pointer is made to point to an object, that object’s count has to be incremented.

• Similarly, every time a pointer no longer points to an object, that object’s count has to be decremented.

• When we run out of dynamic memory we scan through the heap and put objects with a zero reference
count back on the free-list.

• Maintaining the reference count is costly. Also, circular structures (circular linked lists, for example)
will not be collected.

13 Algorithm: Reference Counts. . .

• Every object records the number of pointers pointing to it.

• When a pointer changes, the corresponding object’s reference count has to be updated.

• GC: reclaim objects with a zero count. Circular structures will not be reclaimed.

Live cells

1 2 1 1

be reclaimed)

Garbage (will Garbage (won’t

be reclaimed)

1

H

e

a

p

ba

Global

Variables

10

14 Algorithm: Reference Counts. . .

NEW(p) is implemented as:

malloc(p); p↑.rc := 0;

p↑.next:=q is implemented as:

z := p↑.next;

if z 6= nil then

z↑.rc--; if z↑.rc = 0 then reclaim z↑ endif;

endif;

p↑.next := q;

q↑.rc++;

• This code sequence has to be inserted by the compiler for every pointer assignment in the program.
This is very expensive.

4



15 Readings and References

• Read Scott, pp. 383–385.

• Apple’s Tiger book, pp. 257–282

• Topics in advanced language implementation, Chapter 4, Andrew Appel, Garbage Collection. Chapter
5, David L. Detlefs, Concurrent Garbage Collection for C++. ISBN 0-262-12151-4.

• Aho, Hopcroft, Ullman. Data Structures and Algorithms, Chapter 12, Memory Management.

16 Readings and References. . .

• Nandakumar Sankaran, A Bibliography on Garbage Collection and Related Topics, ACM SIGPLAN
Notices, Volume 29, No. 9, Sep 1994.

• J. Cohen. Garbage Collection of Linked Data Structures, Computing Surveys, Vol. 13, No. 3, pp.
677–678.

5


