
Stack Caching for InterpretersM. Anton ErtlInstitut f�ur ComputersprachenTechnische Universit�at WienArgentinierstra�e 8, A-1040 Wien, Austriaanton@mips.complang.tuwien.ac.atTel.: (+43-1) 58801 4459Fax.: (+43-1) 505 78 38Abstract. An interpreter for a virtual stack ma-chine can spend a signi�cant part of its executiontime fetching values from and storing values to thestack. This paper explores two methods to reducethis overhead by caching top-of-stack values in reg-isters. The dynamic method is based on having oneversion of the whole interpreter for every possiblestate of the cache; the execution of a primitive usu-ally changes the state of the cache and the nextprimitive is executed in the version correspondingto the new state. In the static method a state ma-chine that keeps track of the cache state is added tothe compiler. Common primitives exist in versionsfor several states, but it is not necessary to havea version of every primitive for every cache state.The compiler generates glue code, if necessary, andcompiles the version of the primitive appropriatefor the cache state. Stack manipulation primitivesare usually optimized away.1 IntroductionInterpreters are often used for programming lan-guage implementation. The major advantages overcompilation to native code are simplicity and porta-bility. The major advantages over the generationof C code are compilation speed and exibility(e.g., to generate additional code at run-time). In-terpreters are still the dominant implementationmethod of general-purpose languages like Prolog,Forth and APL, they are even used in special imple-mentations of traditionally compiled languages likeC, and probably the majority of special-purposelanguage implementations are interpreters.In the last years many questions about inter-preters have been asked in the Usenet newsgroupcomp.compilers. E�ciency was a major concern;another question that came up several times iswhether to use a stack or a register architecturefor the virtual machine.The present paper deals with these issues. Sec-tion 2 discusses general e�cency issues; then weconcentrate on a particular aspect of the e�cencyquestion, the question of accessing arguments ofvirtual machine instructions. Our answer is to usea stack machine that caches a variable amount of

stack values in registers (Section 3). We present twomethods for implementing this idea: Either the in-terpreter keeps track of the cache state (Section 4,or the compiler does it (Section 5).A note on teminology: Unless otherwise noted,the terms instruction and primitive refer to vir-tual machine instructions, cache refers to the stackcache implemented in software, and the compileris the program that generates the virtual machinecode.2 Interpreter e�ciencySince we are interested in e�ciency, we limit thediscussion to virtual machine interpreters, and willnot discuss, e.g., syntax tree interpreters. The inter-pretation of a virtual machine instruction consistsof three parts:{ accessing arguments of the instruction{ performing the function of the instruction{ dispatching (fetching, decoding and starting)the next instructionThe �rst and third parts constitute the interpreteroverhead.2.1 NEXTlw $2,0($4) #$4=ipaddu $4,$4,4j $2#nop #branch delay slotFig. 1. Direct threading in MIPS assemblyThe most e�cient method for fetching, decod-ing, and starting the next primitive is still directthreading [Bel73]. Unfortunately, direct threadingcannot be implemented in ANSI C and other lan-guages that do not have �rst-class labels and do notguarantee tail-call optimization (Fig. 2 shows howdirect threading would be implemented in C using
Paper and BibTeX entry are available at http://www.complang.tuwien.ac.at/papers/. This paper was published in:
EuroForth ’94 Conference Proceedings, pages 3--12



typedef void (* Inst)();void add(Inst *ip, int *sp /* other regs */){ sp[1] = sp[0]+sp[1];(*ip)(ip+1, sp+1 /* other registers */);}Inst program[] = { add /* ... */ };Fig. 2. Direct threading in C using tail callstypedef enum {add /* ... */} Inst;void engine(){ static Inst program[] = { add /* ... */ };Inst *ip;int *sp;for (;;)switch (*ip++) {case add:sp[1]=sp[0]+sp[1];sp++;break;}}Fig. 3. Instruction dispatch using switch$L2: #for (;;)lw $3,0($6) #$6=ip#nopsltu $2,$8,$3 #check upper boundbne $2,$0,$L2addu $6,$6,4 #branch delay slotsll $2,$3,2 #multiply by 4addu $2,$2,$7 #$7 contains $L13lw $2,0($2)#nopj $2#nop...$L13: #switch target table.word $L12...$L12: #add:...j $L2#nopFig. 4. Switch dispatch in assembly

typedef void (* Inst)();Inst *ip;int *sp;void add(){ sp[1]=sp[0]+sp[1];sp++;}Inst program[] = { add /* ... */ };void engine(){ for (;;)(*ip++)();}Fig. 5. Direct call threadingadd:...j $31engine:...$L3:lw $2,ip#noplw $4,0($2)addu $3,$2,4jal $31,$4 #callsw $3,ip #branch delay slotj $L3#nopFig. 6. Direct call threading in assemblytail-calls). Two methods are usually used in C: agiant switch (Fig. 3) or calls (Fig. 5). In the �rstmethod the whole interpreter, including the imple-mentations of the instructions, must be in one func-tion. In the second method every primitive is a sep-arate function; this method is actually quite simi-lar to direct threading (it just uses calls instead ofjumps), so I call it direct call threading. Figure 1, 4R3000 R4000direct 3{4 5{7switch 12{13 18{19call 9{10 17{18Fig. 7. Cycles needed for instruction dispatch2



and 6 showMIPS assembly1 code for the three tech-niques (direct call threading needed a little sourcecode twisting to get reasonable scheduling). Fig. 7shows the overhead of these techniques in cycles ontwo processors, the R3000, and the more deeplypipelined R4000. The overhead varies dependingon how many delay slots can be �lled; usually itwill be at the lower bound (all delay slots �lled).The execution time penalty of the switch methodis caused by a range check, by a table lookup, andby the jump to the dispatch routine generated bymost compilers. The call method does not look soslow, but it is usually even slower than the switchmethod: Every virtual machine register, e.g., in-struction and stack pointers, have to be kept inglobal or static variables. Most C compilers keepsuch variables in memory, causing at least a loadand/or store for every virtual machine register ac-cessed in a primitive. In the switch method virtualmachine registers can be kept in local variables,which are translated into real machine registers bygood compilers.typedef void *Inst;void engine(){ static Inst program[] = { &&add /* ... */ };Inst *ip;int *sp;goto *ip++;add:sp[1]=sp[0]+sp[1];sp++;goto *ip++;}Fig. 8. Direct threading using GNU C's \labels as val-ues"Fortunately, there is a widely-available languagewith �rst-class labels: GNU C (version 2.x); sowe can implement direct threading portably (seeFig. 8). If portability to machines without gcc is aconcern, it is easy to switch between direct thread-ing and ANSI C conforming methods by using con-ditional compilation.If the instructions are of constant length, dis-patching the next instruction can be performedin parallel with the processing of the current in-struction. This is very useful for �lling delay slots1 In MIPS assembly, register n is denoted by $n, andthe destination operand of an instructions is usuallythe leftmost register.

of both the instruction dispatch routine as wellas the rest of the instruction. When coding in Ccare must be taken to avoid potential dependencesdue to aliasing (e.g., between instruction and stackpointer) that would prevent the compiler from per-forming good scheduling. If an even higher amountof instruction-level parallelism is desired, a part ofthe dispatch routine (e.g., instruction fetch) can beshifted to earlier instructions. However, this workis wasted if the control ow of the interpreted pro-gram changes (unless there are delayed branches inthe virtual machine).2.2 Semantic contentThe interpreter overhead can also be reduced by re-ducing the number of primitives executed, i.e., byincreasing the semantic content of each instruction.Combining often-used instruction sequences intoone instruction is a popular technique, as well asspecializing an instruction for a frequent constantargument (eliminating the argument fetch and en-abling optimizations in the native code for the in-struction). Care has to be taken that the resultingcode expansion with its higher cache miss-rate doesnot cancel out the bene�ts. Also, often the com-piler must be made more complex to make use ofthese instructions. On the other hand, optimizingcompilers can make instructions with high semanticcontent useless (part of the RISC lesson).2.3 Accessing argumentsIn the hardware area the contest between stack andregister architectures has been decided for registermachines.2 However, for interpretive implementa-tions the picture looks di�erent:From the view of the compiler writer, many lan-guages can be easily compiled for stack machinecode. To achieve better performance with a regis-ter machine, the compiler must perform optimiza-tions, e.g., global register allocation (which needsdata ow analysis). This eliminates one of the ad-vantages of using an interpreter, namely simplicity.Moreover, in an interpreter the spill and moveinstructions necessary in register arechitectures aremuch more time consuming than in hardware, sinceeach instruction also has to execute a NEXT. Thisis not balanced by the fact that the other instruc-tions also have to perform NEXTs, since the otherinstructions usually have higher semantic content.E.g., for a direct threaded implementation on theR4000 a spill or move instruction is (at least) 7times more expensive than in native code, whereas,e.g., an instruction for computing the maximum oftwo numbers is not even twice as expensive as innative code.2 for a dissenting opinion, read [Koo89].3



lw $3,0($6) #$6=iplw $2,4($6)lw $4,8($6)addu $3,$7,$3 #$7=reg. array startaddu $2,$7,$2lw $2,0($2)lw $3,0($3)addu $4,$7,$4addu $2,$2,$3sw $2,0($4)Fig. 9. Add in a register architecture (without NEXT)In hardware the instruction and the register num-bers are decoded in parallel. A simple software im-plementation of a register machine has to fetchand/or decode the register numbers using separateinstructions. Even with the amount of instruction-level parallelism that superpipelined and super-scalar processors o�er today and in the near future,this still costs much time. Since hardware registerscannot be accessed in an indexed way, the virtualmachines registers have to be kept and accessed inmemory, costing even more time. Fig. 9 shows athree register add without NEXT on the MIPS ar-chitecture (10 cycles on R3000).addu $5,$4,$6 #$5=r3 $4=r1 $6=r2Fig. 10. Unfolded add (r1 and r2 into r3)There is an alternative implementation of a regis-ter machine: The registers accessed can be encodedinto the instruction by unfolding it, i.e., by creat-ing a version of the instruction for every combi-nation of registers. The registers can then be ac-cessed directly, and therefore be kept in real ma-chine registers, if there are enough3. Fig. 10 showsone version of the add instruction. However, thisstrategy causes code explosion, and will probablysu�er a severe performance hit on machines withsmall �rst-level caches: E.g., there would be 288-512 versions of every three-register instruction in avirtual machine with 8 registers (the lower boundis for commutative operations); the add instructionalone would need 4.5 KB in a direct threaded im-3 However, the availability of registers should not betaken for granted even on the register-rich RISCs.E.g., when I tried to keep the top of stack (of Forthsstack-oriented virtual machine) in a register on theMIPS architecture, gcc (versions 2.3.3 and 2.4.5)spilled the return stack pointer to memory, an im-portant internal register of the virtual machine.

plementation on the MIPS architecture. The sizeof the �rst-level (real machine) instruction cacheon the R4000 is just 8 KB.lw $2,0($5) #$5=splw $3,4($5)addu $2,$2,$3sw $2,4($5)addu $5,$5,4Fig. 11. Add in a simple stack implementationA simple stack machine does better than a simpleregister machine (see Fig. 11). It has the same num-ber of operand fetches and stores; in addition, manyinstructions update the stack pointer, but there isno fetching/decoding to learn where the operandsare.lw $2,4($5) #$5=spaddu $5,$5,4addu $6,$6,$2 ;$6=tosFig. 12. Add, the top of stack is kept in a registerIf there are enough registers, the number ofoperand fetches and stores can be reduced by keep-ing n top-of-stack values in registers (see Fig. 12).This is not always bene�cial; if an instruction takesx items from the stack and stores y items to thestack, keeping the top n items in registers{ is better than keeping just n � 1 items, ifx � n ^ y � n, due to fewer loads from andstores to the stack.{ is usually slower than keeping n � 1 items, ifx 6= y^x < n^y < n, due to additional movesbetween registers.Moreover, machines that can exploit a highamount of instruction-level parallelism can pro�tfrom the prefetching e�ect of keeping more itemsin registers. On a related note, keeping one item ina register also speeds up oating-point and otherlong-latency instructions, where the store back tothe stack would expose the latency.Keeping one item in a register is never a dis-advantage, if there are enough registers. Whetherkeeping two items is a good idea, depends on thevirtual machine and how it is used. E.g., for Forthit is probably not a good idea, because from thetop ten heavily-used instructions three (16% of all4



dynamically executed instructions) become slower,and only one (5% of the executed instructions) be-comes faster. One (2.6%) may pro�t from prefetch-ing.3 Stack cachingKeeping a constant number of items in registers issimple, but causes unnecessary operand loads andstores. E.g., an instruction taking one item fromthe stack and producing no item (e.g., a conditionalbranch) has to load an item from the stack, that willnot be used if the next instruction pushes a valueon the stack (e.g., a literal). It would be better tokeep a varying number of items in registers, on anon-demand basis, like a cache.This requires di�erent implementations of an in-struction for di�erent cache states. Every allowedmapping of stack items to machine registers consti-tutes a cache state.
stack[0]: $8
stack[1]: $9
sp offset: 2

sp offset: 0

stack[0]: $9
sp offset: 1

-- w
w -- w w
w w -- w w

w --
w w -- w

-- w
w -- w
w w -- w

w --
w w --

--
w -- w
w w -- w

w w --

--
w --
w w --

--
-- w
-- w w
w -- w w

-- w w
w -- w w

Fig. 13. A simple cache state machineThere are several sensible options on the set ofstates allowed. Basically, we would like the set tobe �nite, so we can use �nite state machines to de-scribe the e�ect of executing or compiling instruc-tions. The relations of the states should minimizethe amount of work necessary for getting from onestate to another. Fig. 13 shows a three-state ma-chine for stack caching in two registers. Transitionsare shown for words with various stack e�ects (dueto space limitations not for all stack e�ects).In general, the selection of a set of states andtransitions for a given number of states and regis-

ters is an interesting optimization problem that weleave for future work. Here we present just a fewinsights.In addition to stack accesses, many stack pointerupdates can be optimized away, too: The cachestate can also contain the information how muchthe contents of the stack pointer register di�er fromthe actual value of the stack pointer. A good strat-egy that does not introduce additional states is tolet the di�erence correspond to the number of stackitems in the cache (see Fig. 13). This means thatthe stack pointer need not be updated in instruc-tion implementations that can access all stack itemsin registers, i.e., hopefully most of the time.addu $9,$8,$9Fig. 14. Add in stack caching (full state of thethree-state machine)Stack caching with stack pointer update mini-mization leads to code that is as good as that ofthe unfolded register machine (see Fig. 14).
cached: 5

 $9 $8 $7 $6 $5

cached: 4
 $9 $8 $7 $6

cached: 3
 $9 $8 $7

cached: 2
 $9 $8

cached: 1
 $9

cached: 0

overflow

Fig. 15. Overow transition in a minimal organizationAs a minimum, there should be one state forevery number of stack items in registers (as inFig. 13). To minimize the amount of work, the bot-tom of the cached stack items should be in the same5



register in all states; the other stack items shouldbe allocated similarly. This arrangement of statesavoids the need to move stack items around on thebottom of the cache whenever something on thetop changes. There is a movement cost, however: Ifsomething has to be pushed when the cache is full,all stack items in the cache have to be moved toother registers. Fortunately, overows are very rareif the cache is su�ciently large (if the cache is small,there are not many moves). It can be made rarerby choosing an appropriate followup state for over-owing instructions: On many processors a store tocached memory costs as much as a move, thereforeon overow the transition to any state costs thesame amount. The best choice is usually a slightlymore than half-full state (see Fig. 15): this makescache over- or underows in the near future prettyunlikely.
cached: 5

$9 $8 $7 $6 $5

cached: 4
 $9 $8 $7 $6

cached: 3
 $9 $8 $7

cached: 2
 $9 $8

cached: 1
 $9

cached: 0

overflow

cached: 5
$7 $6 $5 $9 $8

cached: 4
 $7 $6 $5 $9

cached: 3
 $7$6$5

cached: 2
 $7 $6

cached: 1
 $7

overflow

w -- w

w w -- wFig. 16. Avoiding moves with additional statesAnother solution to the movement problem is tointroduce more states: instead of moving all stackitems just the bottom cached stack item is storedto memory and the register where it resided isreused to keep the top of stack. Of course, thisnew mapping of stack items to registers has to berepresented in a new state. But the moves wouldhave to be performed when the new state is left.To avoid this, appropriate neighbours for this newstate should be introduced. If this approach is per-formed consequently, all such moves can be elim-inated, but the number of states is nearly multi-

plied by the number of cache registers. Combina-tions of both solutions to this problem are possible(see Fig. 16).
$9 $8 $8

$9 $9 $8

$9 $9
$9

$9 $8

$9 $8 $9

-

drop

over

over
dup

dup

swap

swap
rot

Fig. 17. A cache organization where one duplication isallowedStack manipulation instructions also cause movesin the minimal state machine. As before, thesemoves can be optimized away by introducing morestates. For stack shu�ing instructions (e.g., swapand rot), the extreme form of this approach createsall assignments of stack items to registers where noregister occurs twice. For duplicating instructions(e.g., dup and over), the extreme form results inan in�nite number of cache states, since an unlim-ited number of such instructions causes an equallyunlimited number of stack items to reside in thecache, and an in�nite number of states is needed torecord all these possibilities. If the number of cachestates is to be limited, the number of duplicationsrepresented in the states has to be limited. E.g.,the number of stack items in the cache could belimited, the number of duplicates of each item, orthe total number of duplications. Figure 17 showsa two register cache organization where one dupli-cation is allowed.If there are several stacks, the simple solution isto treat them separately, with separate caches (andseparate state machines). This is a good solutionfor Forths oating-point stack on machines thathave a separate oating-point register set (nearlyall current machines). They can also be treated ina uni�ed manner, sharing the same set of registers.This is the solution of choice for Forths data andreturn stacks. Moves between the stacks can againbe optimized by introducing additional states.In practice �niteness is not enough, there are alsoother limits to the number of states. Figure 18 givesan idea of the number of states of various cache or-ganizations with a varying number of registers. The\minimal" organization has only one state for a cer-tain number of stack items in registers; \overow6



registers 1 2 3 4 5 6 7 8 n\minimal" 2 3 4 5 6 7 8 9 n+ 1overow move opt. 2 5 10 17 26 37 50 65 n2 + 1arbitrary shu�es 2 5 16 65 326 1,957 13,700 109,601 Pni=0 n!=i!n+ 1 stack items 3 15 121 1,356 19,531 335,923 6,725,601 153,391,689 Pn+1i=0 nione duplication 3 7 14 25 41 63 92 129 n(n+ 1)(n+ 2)=6 + n+ 1return stack 3 6 9 12 15 18 21 24 3nFig. 18. The number of cache statesmove optimization" removes the moves on overowby introducing more states; \arbitrary shu�es" op-timizes shu�e instructions in a similar way, \n+ 1stack items" supports keeping up to n + 1 stackitems in n registers, in any order and with any kindof duplication; these two cases show that the num-ber of states can grow explosively. \One duplica-tion" is the \minimal" organization, extended withstates that represent one (arbitrary) duplication ofa stack item. \Return stack" is the \minimal" orga-nization, combined with caching up to two returnstack items in the same registers, also in a \mini-mal" organization.For organizations with many states, nearly allstates will be rarely used. If a smaller numberof states is desired, many of these states can beeliminated. Transitions to such states have to bererouted, possibly incurring higher transition costs.However, these costs have to be payed rarely, onlywhen the state would have been used.This brings up the question of what transitionsthere should be in the �rst place. The simplest cri-terion is the cost of the transition itself. However,there are often several transitions costing the same(e.g., consider the overow case in the \minimal"organization). In this case a transition should bechosen to the node that has the smallest averagetransition cost (e.g., a half-full state in the above-mentioned overow case, because it minimizes thecostly overows and underows). Indeed, cost of thetransition should be considered to include the aver-age transition cost of the successor node.4 Or, evenbetter, if the future is known, the actual future costcan be used to select the transition.The choice of transitions also inuences the us-age counts of the states. It is desirable to have astrongly biased distribution of usage counts, in or-der to be able to eliminate many states, but also toachieve high processor cache hit rates. This biasingcan be achieved by selecting a speci�c state andchoosing transitions that get closer to this canoni-cal state if there is a choice.If stack item prefetching is desired, states with4 This in�nitely recursive de�nition would result in in-�nite costs, but it is possible to shift the scale into a�nite range.

too few stack items in registers should be forbid-den. This will cause slightly higher memory tra�c:the prefetches will be useless if a number of pushesfollows that causes the stack cache to overow. Inaddition, on overow the prefetched values have tobe stored into memory, unless the cache state alsocontains information about the prefetched values.Prefetching more than one value can also introducemoves (an underow variant of the overow prob-lem). If it is used, prefetching should overcompen-sate these costs by reducing pipeline bubbles.4 Dynamic stack cachingDynamic stack caching is a pure run-time method,i.e., the interpreter maintains the state of the cacheand the compiler need not be aware of it. Thismeans that there is a copy of the whole interpreterfor every cache state. The execution of an instruc-tion can change the state of the cache, and the nextinstruction has to be executed in the copy of the in-terpreter corresponding to the new state.This implies a change of the NEXT routine. In aswitch-based implementation, the instruction justhas to jump to the appropriate copy of the switch.For direct threading the changes are not so sim-ple: The easy solution performs a table lookup (seeFig. 19). This costs a (real machine) load instruc-tion on current RISC processors; to make bad newsworse, this load instruction may cost more thanone cycle, since it increases the path length of theNEXT sequence, which will often become the crit-ical path of an instruction, especially if much ofthe rest has been optimized away (as in the addin state 2 in Fig. 19). On CISCs the lookup maycome for free or at little cost. The other solution isto store the instructions for a state at a �xed o�setfrom the corresponding routines in the other states.Then the address of the routine for an instructioncan be computed by adding the base address of theinstruction and the o�set of the state. This costsa (real machine) add instruction on many proces-sors, but may come for free on others. The problemwith this approach is that no portable language Iknow supports placing routines at speci�c points in7



$L2: #add in state 0: cache emptylw $4,0($6) #$6=splw $3,4($6)lw $2,0($5) #$5=ipaddu $6,$6,8lw $2,4($2) #next state: 1addu $5,$5,4j $2addu $4,$4,$3$L3: #add in state 1: tos in $4lw $2,0($6)lw $3,0($5)addu $6,$6,4lw $3,4($3) #next state: 1addu $5,$5,4j $3addu $4,$4,$2$L4: #add in state 2: tos in $7, second in $4lw $2,0($5)#noplw $2,4($2) #next state: 1addu $4,$4,$7j $2addu $5,$5,4Fig. 19. Add in dynamic stack caching with tablelookupmemory; Even worse, even some assemblers do notsupport it (e.g., the DecStation assembler).If NEXT becomes more expensive, dynamic stackcaching is probably not worth the trouble.Since the whole interpreter has to be replicatedfor every state, only state machines with a fewdozen states or less (depending on the size of the in-terpreter and the (real machine) instruction cache)are practicable. In other words, the stack cacheshould have the minimal organization, maybe witha few frills like a bit of return stack caching, or,if there are few registers for caching, one duplica-tion, to make better use of them. Eliminating themoves of stack manipulation instructions does notpay in many cases anyway: The NEXT has to beperformed anyway, and the moves can often be donein parallel, i.e., in the delay slots. In Forth returnstack caching would be very pro�table, given thehigh frequency of calls and returns. A nice opti-mization is possible here: The instruction pointer(IP) need not be moved to the top of return stackregister during the call, instead the register contain-ing the old IP can be treated as the top of returnstack register and the new IP resides in anotherregister.Since the state of the cache is represented in onlyone value, i.e., the program counter of the proces-sor, it is not possible treat two caches (e.g., for

data and oating-point stack) with separate statemachines in dynamic caching. The states of bothcaches have to be represented in a single state ma-chine. This multiplies their number and makes hav-ing big caches for more than one stack impractical.5 Static stack cachingIn static stack caching the compiler keeps track ofthe state of the cache and generates the code ac-cordingly.This approach o�ers several big advantages overdynamic stack caching:{ There is no need for a special NEXT routineand its possible performance disadvantages, di-rect threading can be used.{ There is no need to replicate the whole inter-preter for every state: First, the implementa-tion of the same instruction in many states canbe the same, i.e., when the arguments of theinstruction are accessed in the same registers,but some other stack items reside in di�erentregisters etc. (in dynamic stack caching theywould have di�erent NEXTs for continuing indi�erent states); second, implementations ofrarely used instruction for rarely used statescan be left out. The compiler will then gener-ate code for a transition into a state for whichthe instruction is implemented.{ Stack manipulations can be optimized awaycompletely, i.e., not even a NEXT is executed.The compiler just notes the state transition.{ The compiler knows the future instructionstream and can generate optimal code for it.Of course, there is also a disadvantage: It is notpossible to execute the same code in di�erent states.The compiler has to reconcile the states of di�erentcontrol ows at control ow joins. Apart from thisfundamental problem there are also the practicalproblems of insu�cent knowledge in the compilerand avoiding compiler complexity; in particular, thecompiler usually knows nothing about the states ofcallers and callees.The traditional solution for the call problem isto have a calling convention. In the case of stackcaching this means that all de�nitions start in aspeci�c state and return in a speci�c (possibly dif-ferent) state. The transition into these states canbe performed by the call and return instructionsrespectively.5A simple solution for the control ow join prob-lem is to have a \control ow convention": at ev-ery basic block boundary (i.e., at every branch and5 This implies that there are several versions of thecall instruction, so the conventional Forth way callingcannot be taken and an explicit call instruction withan inline argument is needed.8



branch target) the code is in a speci�c state. Thetransition into this state can be performed by thebranch instructions; for branch targets the transi-tions have to be performed by additional instruc-tions generated just in front of the target. A slightlymore complex solution is to generate no code be-fore branch targets; the transition to the state atthe branch target must be performed by the branch.This avoids generating additional instructions.Due to the need for a calling convention a returnstack cache cannot be used as e�ectively as in dy-namic stack caching. However, a one-register returnstack cache can be used to good e�ect: at the startof a de�nition the register is �lled with the returnaddress. This provides the leaf procedure optimiza-tion of conventional languages on RISCs. After acall the return stack cache is empty (the value hasjust been used up in the return from the call).Generating optimal code using knowledge of thenext instructions in the basic block is possible inlinear time using a two-pass algorithm, as a spe-cialization of the approach taken in tree patternmatching [PLG88, FHP91]. The �rst pass just de-termines which of the possible code sequences isoptimal, the second pass then generates the code.Both passes use �nite state machines and are there-fore fast. The usefulness of this technique dependson the organization of the cache state machine. Itis only useful if there is more than one transitionpossible for an instruction from a given state andif choosing the right one requires foresight.From a certain point of view there is not muchdi�erence between static stack caching and usinga register architecture for the virtual machine. In-deed, it can be seen as a framework to make virtualregister machines more usable: It provides auto-matic register allocation and spilling without lots ofoverhead instructions. It also provides principles forkeeping the number of di�erent implementations ofan instruction small, if necessary. And it providesa simple, stack-based interface to the higher levelsof the compiler. The low level of the compiler doesnot have to handle the complexities of register al-location, it is just a simple and fast state machine.However, there is quite a bit of complexity in thegenerator that generates the instructions and thetables for the compiler.6 Related workMuch of the knowledge about interpreters is folk-lore. The discussions in the Usenet newsgroupcomp.compilers [c.c] contain much folk wisdomand personal experience reports.Probably the most complete current treatmenton interpreters is [DV90]. It also contains a bigbibliography. Another book that contains severalarticles on interpreter e�ciency is [Kra83].

Most of the published literature on interpretersconcentrates on decoding speed [Bel73, Kli81],semantic content, virtual machine design andtime/space tradeo�s [Kli81, Pit87].Stack caching has been used �rst in hardwarestack machines [Koo89, HFWZ87]. For interpreters,[DV90] proposed dynamic stack caching with a\minimal" cache organization. However, they donot analyse the available options as it is done inSection 3. In particular, they do not optimize stackpointer updates away (this may also be due to theiruse of the 8086 for their examples), and their suc-cessor state for overow is the full state. They re-port speedups (probably over an implementationthat does not keep any part of the stack in regis-ters, probably running the sieve benchmark) of 16%for Forth on an 8086 with a two-register cache and17% for M-Code (a virtual machine for Modula-2)on an 68020 with a three register cache. They alsoreport a reduction of stack referencences in Forthof 54% for one register, 82% for two registers (thisdi�erence results in a 5% speedup on the 8086) and93% for four registers. For M-code, the reductionsare 56% for one register and 100% for three regis-ters. They do not report the number of additionalmoves.7 ConclusionApart from optimizing instruction dispatch and in-creasing the semantic content of the instructions,another factor determines the performance of aninterpreter: fetching the arguments of the instruc-tions. Conventional register architectures do not en-joy the same advantages as in hardware machines;Their disadvantages are compiler complexity, slow-ness and/or big interpreters.The performance of stack machines can be im-proved by caching stack items in registers. There isa large variety of stack cache organizations. Stackcaching can be employed in two ways: In dynamicstack caching the interpreter keeps track of thestate of the cache. A copy of the complete inter-preter has to be kept for every state of the cache,making only cache organization with few states fea-sible. Moreover, on many processors dynamic stackcaching increases instruction dispatch time, elimi-nating much of the speed advantage of caching. Instatic caching the compiler keeps track of the cachestate. This allows using organizations with morestates, using fast direct threading, and stack ma-nipulation operations can often be optimized awaycompletely. But there is a bit of overhead for mak-ing the state conform to calling conventions andreconciling the cache states on control ow joins.I am currently working on implementing theseideas in a Forth interpreter generator [Ert93], which9



can then be used for getting empirical results forvarious organizations on several processors.AcknowledgementsKonrad Schwarz provided valuable comments onthis paper.References[Bel73] James R. Bell. Threaded code. Communi-cations of the ACM, 16(6):370{372, 1973.[c.c] comp.compilers. UsenetNewsgroup; archives available by ftp fromprimost.cs.wisc.edu.[DV90] Eddy H. Debaere and Jan M. Van Campen-hout. Interpretation and Instruction PathCoprocessing. The MIT Press, 1990.[Ert93] M. Anton Ertl. A portable Forth engine.In EuroFORTH '93 conference proceedings,Mari�ansk�e L�azn�e (Marienbad), 1993.[FHP91] Christopher W. Fraser, Robert R. Henry,and Todd A. Proebsting. Burg | FastOptimal Instruction Selection and TreeParsing, 1991. Available via anony-mous ftp from kaese.cs.wisc.edu, �lepub/burg.shar.Z.[HFWZ87] John R. Hayes, Martin E. Fraeman,Robert L. Williams, and Thomas Zaremba.An architecture for the direct execution ofthe Forth programming language. In Ar-chitectural Support for Programming Lan-guages and Operating Systems (ASPLOS-II), pages 42{48, 1987.[Kli81] Paul Klint. Interpretation techniques.Software|Practice and Experience, 11:963{973, 1981.[Koo89] Philip J. Koopman, Jr. Stack Computers.Ellis Horwood Limited, 1989.[Kra83] Glen Krasner, editor. Smalltalk-80: Bits ofHistory, Words of Advice. Addison-Wesley,1983.[Pit87] Thomas Pittman. Two-level hybrid in-terpreter/native code execution for com-bined space-time e�ciency. In Symposiumon Interpreters and Interpretive Techniques(SIGPLAN '87), pages 150{152, 1987.[PLG88] Eduardo Pelegr�i-Llopart and Susan L. Gra-ham. Optimal code generation for expres-sion trees: An application of the burs the-ory. In Fifteenth Annual ACM Symposiumon Principles of Programming Languages,pages 294{308, 1988. 10


