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Abstract

This paper introduces GC assertions, a system interface that pro-
grammers can use to check for errors, such as data structure in-
variant violations, and to diagnose performance problems, such as
memory leaks. GC assertions are checked by the garbage collec-
tor, which is in a unique position to gather information and answer
questions about the lifetime and connectivity of objects in the heap.
By piggybacking on existing garbage collector computations, our
system is able to check heap properties with very low overhead—
around 3% of total execution time—low enough for use in a de-
ployed setting.

We introduce several kinds of GC assertions and describe how
they are implemented in the collector. We also describe our report-
ing mechanism, which provides a complete path through the heap
to the offending objects. We report results on both the performance
of our system and the experience of using our assertions to find and
repair errors in real-world programs.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification—Reliability, Statistical Meth-
ods

General Terms Reliability, Performance, Experimentation

Keywords Memory Leaks, Managed Languages, Garbage collec-
tion

1. Introduction

Garbage collection provides many software engineering benefits,
most notably by eliminating a large class of insidious programming
errors associated with manual memory management, such as dan-
gling pointers and double frees. One downside of automatic mem-
ory management, however, is that programmers are left with less
control and less information about the memory behavior of their
programs. For example, in the absence of explicit free operations,
Java programmers have no way to answer even seemingly simple
questions, such as “Will this object be reclaimed during the next
garbage collection?”

In this paper we present GC assertions, an introspective inter-
face that allows programmers to query the garbage collector about
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the run-time heap structure and behavior of their programs. Like or-
dinary assertions, programmers add GC assertions to their code to
express expected properties of objects and data structures. Unlike
ordinary assertions, however, GC assertions are not checked imme-
diately. Instead, when GC assertions are executed they convey their
information to the garbage collector, which checks them during the
next collection cycle. The key to our technique is that we piggyback
these checks on the normal GC tracing process, imposing little or
no additional cost.

We describe a suite of GC assertions designed to help identify
bugs in Java data structures, including memory leaks and improper
structure sharing. Our selection of assertions balances two compet-
ing goals. The first is to provide a rich and expressive set of asser-
tions that programmers find easy to use and valuable. The second
is to keep the run-time overhead low enough that the system can be
used to detect and prevent errors in deployed software. To this end,
we have identified several categories of heap properties, including
lifetime and lifespan, allocation volume, and connectivity and own-
ership, that can be checked during a single pass over the heap. In
addition, we minimize space overhead by limiting our meta-data to
the set of assertions to be checked and extra bits stolen from object
headers. Even with a significant set of assertions to check during
each garbage collection, our technique increases collection time by
less than 14% and overall run-time by less than 3%.

Using the garbage collector to check programmer-written heap
assertions provides a combination of features not available with
existing techniques:

• More precise than static analysis. Unlike static heap checking,
which operates on an abstract model of the heap, our technique
works on the actual concrete heap, avoiding the need for conser-
vative approximations. In addition, our technique is unaffected
by features that typically thwart static analysis, such as dynamic
class loading, reflection, and bytecode rewriting.

• More efficient than run-time invariant checking. Systems that
support true program invariants must check these properties af-
ter any computation that might violate them, imposing a sub-
stantial performance penalty—as much as 10X to 100X slow-
down [12]. By deferring checks until garbage collection time,
our system can batch them together and leverage the existing
collection computation to eliminate much of the overhead. The
price we pay is that we can miss a transient error if it does not
persist across a GC cycle.

• More accurate than heuristics. Unlike tools based on heuris-
tics (such as “staleness”) or anomaly detection, GC assertions
capture information that is both precise and application spe-
cific. Although adding assertions requires extra effort on the
part of the programmer, the system generates no false positives
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because any violation represents a mismatch between the pro-
grammer’s expectations and the actual behavior of the program.

We describe our implementation of these assertions in the
JikesRVM virtual machine. We also explore different ways that
the virtual machine can react to triggered assertions and the kinds
of information it can provide to help the programmer diagnose the
bug. Finally, we present results for real programs, showing both the
debugging experience and the performance impact.

The rest of this paper is organized as follows: in Section 2 we
describe the kinds of assertions we support and their implementa-
tion in the Jikes RVM research virtual machine. In Section 3 we
provide both quantitative performance results and qualitative de-
bugging results. We describe related work in Section 4 and conclu-
sions in Section 5.

2. GC Assertions

The goal of GC assertions is to provide a simple and low-cost
way for programmers to express and check properties of their data
structures. Assertions are a familiar construct for program checks,
and the kinds of assertions we support involve program behavior
that programmers want to know about, but in many cases have
no direct way to check. The “assert dead” assertion, described
below, checks that a given object is reclaimed at the next garbage
collection. In the absence of explicit free operations, programmers
have no easy way of checking that reclamation occurs, particularly
at the granularity of individual object instances.

In this section we describe the specific GC assertions we sup-
port, how they can be used by the programmer to detect errors, and
how the assertions are implemented in the Jikes RVM research vir-
tual machine. We also discuss different ways that the system can
react to assertion violations, since they are not detected at the point
the assertion is executed.

2.1 Adding assertions

Unlike other approaches, our technique is programmer-driven: it re-
quires extra effort on the part of the programmer to add assertions.
This design, however, has several advantages over tools based on
heuristics or anomaly detection. First, GC assertions capture prop-
erties that programmers already know and want to be able to ex-
press. Second, these properties often represent high-level informa-
tion that cannot be inferred from the program. Because this infor-
mation is precise and application-specific, any violation of a GC
assertion is an immediate and unambiguous error.

For example, we can use GC assertions to detect memory leaks
in a way that is very different from previous techniques. A num-
ber of systems have been designed to detect memory leaks, both
in managed and unmanaged languages. The challenge in managed
languages is determining what constitutes a leak, since leaked ob-
jects are still reachable. Without extra information, most leak detec-
tors must rely on heuristics to identify potential leaks. Some tools
use the notion of “staleness” to identify potential leaks: objects
that have not been accessed in a “long time” are probably mem-
ory leaks [14, 7]. Other tools use heap differencing to find objects
that are probably responsible for heap growth [3, 37, 35, 32, 27].
These techniques, however, can only suggest potential leaks, which
the programmer must then examine manually. Using GC assertions,
programmers can tell our system exactly when particular objects
should be dead. Violations can be detected almost immediately,
rather than having to wait for objects to become stale or fill up
the heap. Our system provides detailed information about the rea-
son for the failure (for example, the path through the heap that is
keeping the object alive.)

2.2 Implementation overview

We implemented these assertions in Jikes RVM 3.0.0 using the
MarkSweep collector. We chose MarkSweep because it is a full-
heap collector, which will check all assertions at every garbage col-
lection. Our technique will work with any tracing collector, such as
generational mark/sweep. A generational collector, however, per-
forms full-heap collections infrequently, allowing some assertions
to go unchecked for long periods of time.

2.3 Lifetime assertions

Lifetime assertions allow the programmer to check that the lifetime
characteristics of objects conform to expectations. These assertions
generally work by marking the given objects at the call to the as-
sertion and then reporting if they are encountered during collection.
Lifetime properties are easy to express and extremely cheap for the
collector to check, but are almost impossible to obtain by any other
means. We implement the following kinds of lifetime assertions:

2.3.1 assert-dead

assert-dead(p) is triggered at the next garbage collection if
the object pointed to by p is not reclaimed (i.e., found to be still
reachable.)

Usage. assert-dead allows the programmer to check that a par-
ticular object is reclaimed at or soon after a specific point in the
program. For example, a common Java idiom is to assign null to
a reference when the object pointed to should be reclaimed. How-
ever, if there are still other references to the object, the object will
not be reclaimed. assert-dead can be used in this situation to
verify that the object is reclaimed.

Implementation. We implement assert-dead as follows. During
execution, when the JVM encounters this assertion, it marks the
object pointed to by p as “dead” using a spare bit in the object’s
header. At the next garbage collection, the garbage collector checks
whether any object encountered during tracing has its “dead” bit
set. If so, it prints a warning along with debugging information to
help the programmer find the error that led to this “dead” object
being reachable.

Because we use spare bits in object headers to store information
about which objects are expected to be dead, there is no space
overhead for this assertion. Time overhead is limited to checking
the state of a bit in the object’s header when it is encountered
during GC. Because the object’s header must be read (and possibly
written) anyway as part of the GC tracing process, the data is
already in cache and the slowdown is minimal.

2.3.2 assert-alldead

assert-alldead() is used in conjunction with a separate
start-region() assertion: the assertion is triggered if any ob-
ject allocated after start-region() is not reclaimed at the
assert-alldead(). This allows the programmer to bracket a
particular region of code, for example a particular method or loop
body, and ensure that it is memory-stable. The region is confined
to a single thread (i.e. each thread can independently be either in or
out of a region).

Usage. This assertion is useful to ensure that certain regions of code
do not “leak” memory into other parts of the application. For exam-
ple, in a server application, one might bracket the connection ser-
vicing code with start-region and assert-alldead assertions
to ensure that, when the server has finished servicing the connec-
tion, all memory related to that connection is released.

Regions are widely used in the C/C++ world [4, 41], particu-
larly by the Apache HTTP Server [18] and other projects that use
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the Apache Portable Runtime [20]. Rather than enforce region be-
havior to improve performance, our assertions check for region be-
havior in order to validate programmer expectations.

Implementation. We implement assert-alldead as follows.
Each thread in Jikes RVM has a boolean flag to indicate whether
it is currently in an alldead region, and a queue to store a list
of objects that have been allocated while in the region. When the
programmer invokes the start-region assertion, the flag in the
thread is switched to indicate that we are now in a region. Every
allocation checks the flag to determine if it occurred within a re-
gion, and if it is, the allocated object is added to the queue. When
the assert-alldead call occurs, the region flag is reset and the
queue is processed, calling assert-dead on each object in the
queue.

The space overhead for this assertion depends on whether a re-
gion is currently active in the given thread. If not, the space over-
head is a boolean and a queue reference for each thread. Otherwise,
the space overhead consists of a boolean and a queue for each re-
gion that is currently active, plus a word for each object that has
been allocate while the region has been active. When the region
ends, the queue will be flushed, and we will reclaim the one-word-
per-object space needed for the region metadata.

The time overhead consists of checking the thread’s region flag
on every allocation, plus, if we are in an active region, adding the
newly allocated object to the thread’s region object list. By using
assert-dead to mark the objects at the end of the region, we do
not incur an extra time or space penalty to check that objects are
deallocated at the end of the region.

2.4 Volume assertions

Volume assertions express constraints on the number or total vol-
ume of particular categories of objects. These assertions are imple-
mented by accumulating the information during heap scanning, and
checking against the constraints when finished.

2.4.1 assert-instances

assert-instances(T, I) is triggered when the total number of
objects of type T exceeds I at the next collection. Passing 0 for I

checks that no instances of a particular class exist (at GC time.)

Usage. This assertion is most useful for checking that either 0 or
1 instance of a certain class exist. For example, one might employ
this assertion to check uses of the singleton pattern. For a variety of
reasons, including subclassing and serialization, this design pattern
is difficult to implement correctly [22]. With GC assertions, we can
easily check for correctness by asserting that only one instance of
the class exists at a time. Note, however, that we cannot enforce the
singleton pattern using GC assertions.

Another potential use is in situations where the number of
objects of a certain type should be limited for best performance,
but it is not strictly an error if the limit is exceeded. We discuss
such a situation in Section 3.2.2.

Implementation. Our implementation of assert-instances is differ-
ent from that of the previous two assertions since this assertion is
tied not to object instances but to types. In Jikes RVM, the RVM-
Class class corresponds to a Java class, so we modify RVMClass to
maintain two extra pieces of information: the instance limit and the
instance count for this class.

When the virtual machine encounters an assert-instances
call, we set the instance limit for the type and add the type to
a list of types for which we are tracking instances. During GC,
every time we encounter an object of a tracked type, we increment
the corresponding RVMClass’s instance count. At the end of GC,

we iterate through our list of tracked types, checking whether the
instance limit has been violated.

This implementation incurs a space overhead of two words per
loaded class (for the instance limit and instance count), as well as
one word per tracked type (i.e. a type that has had an instance limit
asserted) for the array of tracked types. We also incur a small time
overhead by checking the RVMClass of every object during tracing,
plus incrementing the instance count if necessary and checking the
list of tracked types for violations at the end of GC.

2.5 Ownership assertions

Ownership assertions allow programmers to check the connectivity
properties of individual objects or data structures. The garbage
collector is in a unique position to check such properties, since it
traverses all reachable objects in the heap, regardless of their type
or access control qualifiers.

2.5.1 assert-unshared

assert-unshared(p) is triggered if the given object has more
than one incoming pointer. It is a simple test to ensure than an
object has no more than one direct parent.

Usage. This assertion can be used to check simple connectivity
properties of data structures. For example, a programmer can use
assert-unshared to verify that a tree data structure has not inad-
vertently become a DAG or other kind of graph.

Implementation. Our implementation of assert-unshared is
similar to that of assert-dead. Once again, the programmer must
assert in the program code that a object should be unshared after a
certain point. The JVM marks the object as “unshared” by setting
a spare bit in the object header. During garbage collection, the
garbage collector checks objects that are encountered more than
once (i.e. whose mark bits are already set) for this “unshared” bit.
If such an object is encountered, we print a warning along with
debugging information.

There is no space overhead for this assertion since we use a
spare bit in the object header, and the time overhead is just the cost
of checking the bit in each object’s header during GC tracing.

2.5.2 assert-ownedby

assert-ownedby(p,q) is triggered if the object pointed to by q

is not owned by the object pointed to by p.
There are several different ways to define what it means for

one object (the owner) to own another object (the ownee) [15, 10].
Initially, our ownership assertion required that all paths through the
heap from the roots (local and global variables) to the ownee must
pass through the owner. This definition, however, is too restrictive
to be practical: common constructs, such as iterators, violate the
assertions and make them useless. Instead we provide a notion of
ownership that focuses on detecting unexpected structure sharing,
particularly when it impacts object lifetimes. Our definition is as
follows: once ownership is asserted, the set of paths through the
heap to the ownee must include at least one path that passes
through the owner. The idea is that an ownee may be referenced by
other objects, but it should never outlive its owner. This property is
checked for each owner/ownee pair at every garbage collection.

As we show in Section 3, this assertion is often a more natural
way to find memory leaks than using assert-dead(p). Instead of
identifying the point at which an object is no longer needed, the
programmer just identifies the larger data structure that governs its
lifetime. For example, consider a data structure in which elements
are stored in a main container and also cached in a hash table. We
can assert that the container owns the elements; if the system ever

237



finds elements that are only reachable from the hash table, it reports
an error.

We impose some restrictions on ownership in order to keep
the cost low: the regions of the heap governed by different owner
objects may not overlap. That is, the path from an owner to its
ownee should not pass though any other owner (or its ownees). We
discuss this restriction further below.

Usage. We expect assert-ownedby to be most useful when an
object’s lifetime is correlated to the lifetime of its owner collection.
That is, when an object should not outlive its owner collection or
survive when removed from that collection. For example, an order
processing program might store orders in a collection, and when
those orders have been processed, they are removed from the table
and should be deallocated. Using assert-ownedby to assert that
the orders are owned by their collection would help the programmer
detect memory leaks caused by outstanding references to these
order objects.

Implementation. assert-ownedBy is the most complicated asser-
tion to implement. Our goal is to check this assertion with no extra
GC work and without storing extraneous path information during
collection.

With assert-ownedBy, the user expresses owner/ownee pairs.
There may be an unbounded number of owners and ownees, and
we wish to check them all in a single GC pass. In its most gen-
eral form, this problem incurs a significant overhead in space and
time. Consider the following general algorithm for checking own-
ership assertions: during GC tracing, if the collector encounters an
ownee, it checks to see if that ownee’s owner is on this path. If so,
the ownee is marked as “owned.” The other possibility is that the
collector encounters the owner and then a previously marked ob-
ject. We need to know whether the ownee is reachable from this
previously marked object, but we do not want to repeat the tracing
work. One way around this would be to bubble ownee information
up the path when an ownee is encountered. In the general case, this
results in each object being tagged with all ownees reachable from
it. The space and time overhead from storing this information is
prohibitive.

To avoid this problem, we modified the garbage collector to
trace objects in a different order. Instead of starting at the roots, we
added a new “ownership” phase to the collector that starts tracing
from each owner object. If we encounter an ownee object that
belongs to the current owner, we mark it as “owned.” After tracing
from all the owners, we enter the standard root scanning phase and
allow the collector to proceed as normal. If the GC encounters an
ownee object that has not been marked as “owned,” we know it is
not reachable from its owner, and we print a warning and debugging
information. Notice that the portions of the heap that are reachable
from the owners are marked in the ownership phase, so they will
not be traced again. Thus we are able to check the ownership
assertion without per-object memory overhead or processing any
objects twice.

This strategy solves the performance problem, but introduces
two new issues. First, by starting GC tracing with the owner objects,
we are assuming they are live. This may not be the case. To address
this problem, we avoid marking the owner object when we do the
ownership scan. We still mark all objects reachable from the owner.
For the owner to remain live, it needs to be marked during the
root scan phase, that is, it must be reachable from a root. Thus
if the owner object is unreachable, it will be collected during this
GC. However, any objects reachable from the owner that are not
reachable from a root will not be collected until the next GC. This
results in additional memory pressure that may cause the next GC
to occur sooner.

The second problem relates to data structure overlap. Suppose
an ownee object is reachable from both its owner and another
object’s owner, and the other owner is selected to be traced first
in the ownership phase. The ownee will be marked but not set as
“owned” because we did not start scanning from its owner. When
we start tracing from the ownee’s owner, the ownee has already
been marked and will not be processed again. Thus we will trigger
a false warning for this object. One could address this problem by
enforcing a condition that the data structures defined by owners be
disjoint. However, data structures in real programs are usually not
disjoint; their objects often have back edges that result in significant
overlap. Instead, we designed the ownership scanning phase to stop
following a path when an ownee is reached. Ownees are added to
a queue and processed after the scanning from owners has been
completed. Thus collections are essentially truncated when their
leaves are reached, avoiding the back edge problem. We do enforce
a condition that the parts of the data structure from the owner node
to the ownees must be disjoint from that of other owners. For the
typical use-case where assert-ownedBy is used to keep track of
objects in a collection, this design maintains the desired semantics,
while supporting the kinds of data structures that occur in real
programs. We modify the marking algorithm by breaking it into
two phases:

Phase 1: Perform a heap scan starting at each owner:

• Do not mark the owner itself at this point, since we do not yet
know if it is actually reachable.

• If we encounter an ownee object, check to make sure it belongs
to the current owner. If not, issue a warning (improper use of
the assertion).

• If we encounter another owner, mark it and stop the scan – we
will scan this owner independently.

Phase 2: Perform the normal heap scan (starting at the roots):

• If we encounter an ownee (of any owner) it means that it is
not properly owned—or it would have been marked in the first
phase of the algorithm.

To check this assertion we must maintain a list of owner-ownee
pairs. We implement this as a pair of arrays, one containing owner
objects and the other containing arrays of ownee objects, one for
each owner. Thus the metadata overhead for this implementation is
one word per owner or ownee object. Time overhead is as follows:
for each ownee object encountered during tracing, we must check
an ownee array to see if it owned by the correct owner. The ownee
arrays are sorted, so we do a binary search to find the ownee object.
Thus, the worse case time overhead is n log n, where n is the
number of ownee objects. In practice we find the overhead to be
negligible, as discussed in Section 3.1.

2.6 Assertion violations

When an assertion is triggered the garbage collector has several
ways it can take action.

• Log an error, but continue executing. In the case of the life-
time assertions we can report either the reference that is directly
keeping the object alive or the full path through the heap. In our
experiments in Section 3 we found that our system can maintain
full path information with no measurable overhead.

• Log an error and halt. Similar to the case above, but is used
for assertions whose failure indicates a non-recoverable error.

• Force the assertion to be true. In the case of lifetime asser-
tions, the garbage collector can force objects to be reclaimed
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Warning: an object that was asserted dead is
reachable.
Type: Lspec/jbb/Order;
Path to object: Lspec/jbb/Company; ->

[Ljava/lang/Object; ->
Lspec/jbb/Warehouse; ->
[Ljava/lang/Object; ->
Lspec/jbb/District; ->
Lspec/jbb/infra/Collections/longBTree; ->
Lspec/jbb/infra/Collections/longBTreeNode; ->
[Ljava/lang/Object; ->
Lspec/jbb/infra/Collections/longBTreeNode; ->
[Ljava/lang/Object; ->
Lspec/jbb/Order;

Figure 1. Example of full-path error reporting. Each line gives the
type of an object along the path from root to the object of interest.

by nulling out all incoming references. This might allow a pro-
gram to run longer without running out of memory but risks
introducing a null pointer exception.

In this system, we choose to log the error and continue execut-
ing, so that we retain the semantics of the program without any
assertions. We discuss our error reporting scheme in Section 2.7.

However, for future work we would like to explore the other
options above, as well as a programmatic interface that would
allow the programmer to test the conditions directly and take action
in an application-specific manner. It might make sense to support
different actions based on the class of assertion that is violated.

2.7 Providing debugging information

Once an assertion is triggered, the programmer still needs help
determining the cause of the error. For most of these assertions, the
problem occurs because of an unexpected path through the heap to
the offending object. Thus, displaying that path for the user would
be the best way to help pinpoint the error.

Our reporting strategy is to provide the full path through the
object graph, from root to the “dead” object. This information is
extremely valuable for fixing Java memory leaks, since all leaks
are ultimately caused by outstanding references to objects that are
no longer needed. The full path to the leaked object identifies
the reference or container that needs to be cleared to stop the
leak. Our information is similar to that provided by Cork [27], but
much more precise: our path consists of object instances, not just
types (although currently, we display only their types in the error
message.)

Our implementation modifies the management of the worklist
that holds unprocessed references for the collector during tracing
(the so-called “gray” objects.) The baseline algorithm performs a
depth-first search by popping a reference off the worklist, scan-
ning the object, and pushing all its outgoing references back on the
worklist. In our algorithm, we keep this object on the worklist while
its outgoing references are being traced, allowing us to reconstruct
the path when necessary. We pop a reference from the worklist, set
its low order bit and push it back onto the worklist; then we con-
tinue to scan the object normally. Because all objects in Jikes RVM
are word aligned, the two low order bits are unused, and we can
safely use one of them for this algorithm. If we encounter a refer-
ence whose low-order bit is set, we discard it and continue—this
simply indicates that we have already visited all objects reachable
from it. Thus, at any given time during tracing, the subset of the
worklist whose references have their low bit set define the complete
path from the root to the current object. Figure 1 shows an exam-
ple of the full-path output provided when an assertion violation is
detected.

A limitation of this technique is that, to print this information for
the user, we must be able to identify the offending object or path
when we first encounter it. For assert-dead and assert-ownedBy, the
detection algorithm naturally provides this information. However,
for assert-unshared, we have no way of knowing which path is
the “correct” one, and we only know there is a problem when we
encounter the second path. We can print the second path, but it may
not help the user find the problem. Similarly, with assert-instances,
we only know that there is a problem after we have exceeded the
instance limit for a type, and the “problem” paths may have been
traced earlier. In these cases, the user will need to use other tools if
she cannot find the problem with the given debugging output.

3. Results

We implemented GC assertions in Jikes RVM 3.0.0 using the Mark-
Sweep collector. This section describes our results, presenting per-
formance results for the system along a description of our expe-
riences using it to find and fix bugs. We collected performance
measurements using a standard benchmark suite; for our qualitative
evaluation we used GC assertions to check for errors in real-world
programs.

3.1 Performance

We first present performance measurements for GC assertions run-
ning on a standard set of benchmarks. For most of the benchmarks
we measure the performance of running with no assertions, in order
to determine the baseline cost of adding the assertion infrastructure
into the collector. Due to the effort required to add assertions to un-
familiar code, we present measurements for two of the benchmarks
running with a non-trivial set of assertions added. In all cases, the
overhead of the system remains extremely low—around 3% or 4%.

3.1.1 Methodology

We use the DaCapo benchmarks (version 2006-10-MR2) [6], SPEC
JVM98 [39], and a fixed-workload version of SPEC JBB2000
called pseudojbb [40] to quantify performance. For SPEC JVM98,
we use the large input size (-s100); for DaCapo and pseudojbb,
we use the default input size. All experiments were run on a 2.0
GHz Pentium-M machine with 2 GB of RAM, running Linux
2.6.20.

We use the adaptive configuration of Jikes RVM, which dy-
namically identifies frequently executed methods and recompiles
them at higher optimization levels. We iterate each benchmark four
times and record the results from the fourth iteration. We repeat
this twenty times for each benchmark. We execute each benchmark
with a heap size fixed at two times the minimum possible for that
benchmark using the MarkSweep collector.

In Figures 2 and 3 we report two results for each benchmark.
The Base configuration corresponds to running the unmodified
benchmark on an unmodified version of Jikes RVM 3.0.0, using
the MarkSweep collector. The Infrastructure configuration runs the
unmodified benchmark on our modified version of Jikes RVM that
supports GC assertions. This experiment measures the overhead
of checking the extra bits and recording debugging information—
the GC assertions infrastructure—without any assertions added to
the programs. We report the change in total execution time and
GC time separately so the reader can understand the performance
impact on both overall execution time and the GC subsystem. The
error bars correspond to a 90% confidence interval.

In Figures 4 and 5 we report results for 209 db and pseudojbb
modified to include GC assertions in appropriate places. For exam-
ple, in 209 db we asserted that all Entry objects are owned by their
containing Database object, and we added assert-dead assertions at
code locations where the authors had assigned null to an instance
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checking extra bits and building full-path debugging information. Overall run-time increases by 2.75% (the geometric mean) and 12% in the
worst case (hsqldb).
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Figure 3. GC-time overhead for GC assertion infrastructure. Overall GC time increases by 13.36% (the geometric mean) and 30% in the
worst case (bloat).

variable (a common Java idiom that usually indicates that the object
pointed to should be unreachable). We describe our modifications
to pseudojbb in Section 3.2.1 below. These tests are meant to sim-
ulate the typical usage of GC assertions in production code. Again,
the error bars correspond to a 90% confidence interval.

3.1.2 Discussion

For the Infrastructure configuration, our results in Figures 2 and 3
show that the overhead of the assertion-checking infrastructure is
very low. Overall execution time increases by 2.75%, and mutator
time increases 1.12%, which is within the noise. GC time increases
by 13.36%, which is reasonable considering that the collector must
perform several checks on every object it encounters.

For the WithAssertions test, our results in Figures 4 and 5
show that we can check a large number of GC assertions without
negatively affecting overall run-time. For 209 db, our added GC
assertions result in 695 calls to assert-dead and 15,553 calls to
assert-ownedBy. During each GC, we check on average 15,274
ownee objects to ensure they are correctly owned. Running time
increases by 1.02% and GC time by 49.7% compared to the Base

configuration; they increase by 0.47% and 30.1%, respectively,
compared to the Infrastructure configuration. While the increase in
GC time is significant, it is a low cost for checking the ownership
properties of over 15,000 objects.

For pseudojbb, our added GC assertions result in one call to
assert-instances and 31,038 calls to assert-ownedBy at run-time.
However, we find that during each GC only 420 ownee objects are
checked (on average). The reason for this descrepency is that Order
objects are relatively short-lived. We instrument Order objects as
they are inserted into an orderTable, but there is a great deal
of churn in the Orders as they are processed and removed from
the orderTable. As a result, there are many configurations of the
orderTable that our system never sees. Note that our system must
still maintain meta-data for each call to assert-ownedBy—we must
store information about each ownee, and we must remove each
unreachable ownee after a GC. However, this extra work does not
impact overall performance. We find that running time increases by
1.84% and GC time by 15.3% compared to the Base configuration;
they increase by 2.47% and 4.40%, respectively, compared to the
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Figure 4. Run-time overhead with GC assertions added. Even with
a large number of assertions to check (over 100,000 for 209 db),
run-time increases by less than 2%.
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Figure 5. GC-time overhead with GC assertions added. Although
the overhead for 209 db is around 49%, this time is used to check
approximately 15,000 owner-ownee pairs during each GC.

Infrastructure configuration. We are able to check the assertions in
pseudojbb at very low cost.

3.2 Qualitative evaluation

In addition to the performance benchmarks above, we tested our
GC assertions on real-world code to search for memory leaks and
other errors. We instrumented SPEC JBB2000 and lusearch from
the Dacapo suite. In addition, we attempted to answer a question
from the Sun Developer Network by instrumenting the attached
program. We found that in most cases, GC assertions helped us
find and repair problems quickly and precisely. In addition, GC
assertions gave us a better understanding of how these programs
worked.

3.2.1 SPEC JBB2000

SPEC JBB2000 is a benchmark that emulates a three-tier business
system, with data stored in b-trees rather than an external database.
Notably, it uses the factory pattern to create and dispose of objects.
We first instrumented the destroy() method of the Entity object

with an assert-dead assertion, believing that an object that had been
destroyed should be unreachable. We found that “dead” Order ob-
jects are reachable from Customer objects. Upon further investiga-
tion, we found that each Customer object maintains a reference to
the last Order this Customer placed. When the Order is destroyed,
the lastOrder field in the associated Customer is not cleared, and
this reference prevents the Order from being reclaimed. Since each
Order object maintains a reference to the Customer to which it be-
longs, we were able to repair this leak by setting the reference in
the Customer to null when the Order is destroyed. We found a sim-
ilar situation with Address objects, which are also pointed to by
Customer objects, but we were not able to repair it since there is no
back reference from Addresses to Customers. The path example in
Figure 1 shows the debugging output given by GC assertions when
this error is detected.

The second problem we found was more subtle. In the main loop
of the benchmark, the Company object from the previous iteration
is destroyed (triggering a call to assert-dead) before creating the
Company object for the current iteration. The previous Company is
referenced in the oldCompany local variable, which remains visible
through the whole method. Thus the previous Company object
cannot be reclaimed. Simply setting the variable to null after the
Company is destroyed allows this whole Company data structure to
be reclaimed. Note that the object referenced by the oldCompany
variable will be reclaimed on the following iteration when it is
replaced by the Company that was allocated in this iteration. This
is not a memory leak but an example of memory drag, where the
Company object could be reclaimed earlier than it is. The Company
data structure keeps a great deal of data live, and reclaiming it
earlier reduces memory pressure on the system. Notice also that
this problem could have been found by using assert-instances on
the Company type, since there can only be one Company live in the
benchmark at any given time.

Third, we investigated a known memory leak in SPEC JBB2000
first reported by Jump and McKinley [27]. SPEC JBB2000 places
Order objects into an orderTable, implemented as a BTree, when
they are created. They are completed during a DeliveryTransaction
but are not removed from the table, causing a memory leak. To find
this leak, we placed an assert-dead assertion for the Order object
at the end of DeliveryTransaction.process(). Our GC asser-
tions system showed us the path through the object graph where
these Order objects were reachable, and with this information we
were able to repair the leak. It is important to note that, for the GC
assertion to work, the programmer must know that the Order object
should be dead at the end of DeliveryTransaction.process().
However, in a large project where no single programmer can under-
stand the whole system, a GC assertion like this would be helpful
in explaining anomalous behavior.

Finally, we revisited the issue of “dead” Order objects being
reachable from Customer objects. One flaw of the assert-dead as-
sertion is that the user must know where to place the assertions,
i.e. where objects become unreachable. In SPEC JBB2000, we are
lucky that the program includes destructors to deallocate objects,
but in the general case Java programs will not have such infor-
mation. Instead, we applied the assert-ownedBy assertion to the
Orders in SPEC JBB2000. Orders are stored in an orderTable
in each District, so we instrumented the District.addOrder()
method and asserted that each Order added is owned by its
orderTable. We found the same problem as before: Customer
objects keep Order objects live after they are removed from the
orderTable. The ownership assertion is an easier way to detect
such problems since the user does not need to know when an object
should be dead.
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3.2.2 lusearch

lusearch is a benchmark in the Dacapo suite that tests the Apache
Lucene text search engine library [19]. lusearch reads a pre-built
index on disk and performs searches over the index using multiple
threads.

This benchmark uses the Lucene IndexSearcher class to perform
the searches. The Lucene documentation states, “For performance
reasons it is recommended to open only one IndexSearcher and
use it for all of your searches.” [21] We instrumented lusearch
with an assert-instances assertion stating that only one instance
of IndexSearcher should be live. We found that for most of the
benchmark’s execution, 32 instances of IndexSearcher are live, one
for each thread performing searches. This could be repaired by
using only one instance of IndexSearcher and sharing it among the
threads.

In this example, the programmer using the Lucene library was
not aware of this performance recommendation. The library code
could include an assert-instances assertion to warn a user if he tries
to use more than one IndexSearcher instance in his code.

3.2.3 SwapLeak

We investigated a memory leak reported by Bond and McKin-
ley [8]. The memory leak comes from a Sun Developer Network
post where a user was asking for help understanding why an at-
tached program runs out of memory [17]. The program defines a
class SObject with a non-static inner class Rep with an instance
field that points to a Rep instance. The SObject class defines a
swap() method that takes another SObject and swaps the Rep
fields of each.

The main loop of the program allocates a fixed number of
SObjects and adds them to an array. It then iterates over the array,
allocating new SObjects and swapping their Rep fields with those
of the SObjects already in the array. The user expected that these
new SObjects would be reclaimed after the swap, since they were
not referenced by any local variables.

We instrumented the user’s code with assert-dead assertions af-
ter the swap operation, and on execution we received the following
warning:

Warning: an object that was asserted dead is
reachable.
Type: LSObject;
Path to object: LSArray; ->

[LSObject; ->
LSObject; ->
LSObject$Rep; ->
LSObject;

This warning explains the problem. An SObject in the array
has a reference to an instance of the Rep inner class, but that
Rep instance maintains a pointer to a different SObject, one that
we expected to be unreachable. The problem stems from the fact
that non-static inner classes have access to other members of the
enclosing class. Thus they must maintain a hidden reference to the
enclosing class instance in which they were instantiated. Our GC
assertions system displays this hidden reference and explains why
the SObject instances were not being reclaimed.

4. Related Work

Our work is related to a variety of techniques for checking heap-
based data structures and for detecting memory errors. These tech-
niques can be roughly categorized according to (a) how the de-
sired properties are specified (ranging from programmer-written in-
variants to statistical analyses, such as anomaly detection), and (b)
when and how often the checks are performed (either at compile-
time, or at various granularities during execution.) GC assertions

represent a particular point in this space: on the one hand, they re-
quire extra work to add to code, and there is no guarantee of when
they will be checked; on the other hand, they provide the program-
mer with an expressive range of checks and high-quality results,
while maintaining extremely low run-time cost.

4.1 Run-time checking

GC assertions are closely related to program invariants, but dif-
fer in the balance between the strength of the guarantees pro-
vided and the performance of checking. Modeling languages, such
as JML [12] and Spec# [2], allow programmers to add invariant
specifications into their code, which are checked automatically at
run-time. These systems ensure that the invariants always hold by
checking them at every program point where they could be vio-
lated (for example, after every routine that updates a data struc-
ture). This approach, while complete, is extremely expensive—it
can cause programs to run many times slower. Our system, on the
other hand, checks heap properties very efficiently, but at essen-
tially random program points (GCs). GC assertions, therefore, can-
not technically be considered invariants, since we can miss tran-
sient violations (those that do not persist across a GC boundary).

Recent work has used incrementalization to speed up run-time
invariant checking by eliminating recomputation of the invariant
check on parts of the data structure that have not changed [38, 25].
This technique is complementary to GC assertions: if we know that
parts of a data structure have not changed since the last GC, we
could avoid checking assertions for those objects.

HeapMD [13] monitors properties of objects (such as in-degree
and out-degree) at run time and reports statistical anomalies as
possible errors. ShapeUp monitors similar properties for Java, but
uses type information to make checks more precise [28]. ShapeUp
computes a class-field summary graph and reports anomalies in the
in-degree and out-degree of its nodes. As with leak detection, the
primary difference between this work and ours is that we allow
the programmer to declare explicitly what conditions constitute an
error, and we check those conditions precisely and cheaply.

The QVM [1] Java virtual machine provides heap probes, which
can be used to check some of the same properties as GC assertions
and are also implemented using garbage collector infrastructure.
The semantics of heap probes, however, are substantially different
from GC assertions. Heap probes are performed immediately at the
point the probe is requested. QVM triggers a garbage collection for
each heap probe that must be checked, incurring a hefty overhead
that is mitigated by sampling the heap probes rather than checking
every single one. Our system, on the other hand, batches assertions
together and checks them all in a single heap traversal during
a regularly scheduled collection. As a result, checking is much
more efficient, but it cannot verify properties at the exact point the
assertion is made.

4.2 Static analysis

Previous work on static analysis has yielded a significant body
of sophisticated techniques for modeling the heap and analyz-
ing data structures at compile-time. Previous approaches include
pointer analysis [11, 30, 5], shape analysis [24, 36, 26], type sys-
tems [23, 15, 9], and formal verification [31, 16, 42]. The strength
of static analysis is that it explores all possible paths through the
program: a sound analysis algorithm can prove the absence of er-
rors, or even verify the full correctness of a data structure imple-
mentation. Static analyses, however, face three substantial chal-
lenges: (1) conservative assumptions about input values and con-
trol flow can lead to many spurious errors (false positives), (2) al-
gorithms for building a detailed heap model scale poorly to whole-
program properties, and (3) analysis typically fails for programs
that use dynamic class loading, reflection, or bytecode rewriting.
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Our system builds on this work by supporting the kinds of data
structure checks that have proved useful in static analysis, but
avoids the pitfalls by checking them at run-time.

4.3 Instrumenting and controlling the JVM

Sun provides the JVM Tool Interface (JVMTI) [29] to allow tool
developers to monitor run-time and GC activity. Several of our GC
assertions could be implemented using JVMTI, with the advantage
that they would be portable across different JVMs. We chose not
to use JVMTI for three reasons. First, many of the hooks we need
for GC assertions are optional parts of the specification. Second,
JVMTI would not allow us to explore certain reporting mecha-
nisms, such as the full object path. Finally, modifying the virtual
machine incurs a lower performance overhead since we can per-
form low-level optimizations like using spare bits in object headers
and changing the order of object traversal in the GC to speed up
assertion checking.

O’Neill and Burton propose a mechanism that allows users to
annotate objects with small pieces of code called simplifiers, which
are executed by the garbage collector [34] when an object is traced.
Simplifiers provide a general mechanism for injecting code into the
GC process, but the focus is on improving program performance.
Some of our GC assertions could be implemented using simplifiers:
for example, assert-dead() could use a simplifier to check a flag
in the object or object header. It would not be possible, however, to
implement an assertion like assert-ownedBy(), which requires
changing the order of traversal of the object graph.

The COLA system allows programmers to dictate the layout
order of objects to the garbage collector using an iterator-style
interface [33]. Like simplifiers, the focus of COLA is on controlling
the garbage collector’s behavior to improve performance.

5. Conclusion

The garbage collector is a powerful source of information about
large-scale program state and behavior because it systematically
visits all objects and references in the heap. It is in a unique posi-
tion to check a wide variety of data structure properties. Further-
more, the garbage collector can check properties, such as object
lifetime, that no other subsystem has access to. This paper presents
a programmer-driven technique for taking advantage of these ca-
pabilities by providing a structured way to communicate with the
garbage collector. GC assertions are easy to use and provide ac-
curate results with high-quality debugging information. By piggy-
backing assertion checks on the existing GC tracing algorithm, GC
assertions are cheap enough to be used in deployed software, where
they can help detect the most important and serious bugs: those that
occur during real executions.
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