
Myths and Realities:
The Performance Impact of Garbage Collection∗

Stephen M Blackburn
Department of Computer Science

Australian National University
Canberra, ACT, 0200, Australia

Steve.Blackburn@cs.anu.edu.au

Perry Cheng
IBM T.J. Watson Research Center

P.O. Box 704
Yorktown Heights, NY, 10598, USA

perryche@us.ibm.com

Kathryn S McKinley
Department of Computer Sciences

University of Texas at Austin
Austin, TX, 78712, USA
mckinley@cs.utexas.edu

ABSTRACT
This paper explores and quantifies garbage collection behavior for
three whole heap collectors and generational counterparts: copy-
ing semi-space, mark-sweep, and reference counting, the canonical
algorithms from which essentially all other collection algorithms
are derived. Efficient implementations in MMTk, a Java memory
management toolkit, in IBM’s Jikes RVM share all common mech-
anisms to provide a clean experimental platform. Instrumentation
separates collector and program behavior, and performance coun-
ters measure timing and memory behavior on three architectures.

Our experimental design reveals key algorithmic features and
how they match program characteristics to explain the direct and
indirect costs of garbage collection as a function of heap size on the
SPEC JVM benchmarks. For example, we find that the contiguous
allocation of copying collectors attains significant locality benefits
over free-list allocators. The reduced collection costs of the gener-
ational algorithms together with the locality benefit of contiguous
allocation motivates a copying nursery for newly allocated objects.
These benefits dominate the overheads of generational collectors
compared with non-generational and no collection, disputing the
myth that “no garbage collection is good garbage collection.” Per-
formance is less sensitive to the mature space collection algorithm
in our benchmarks. However the locality and pointer mutation
characteristics for a given program occasionally prefer copying or
mark-sweep. This study is unique in its breadth of garbage collec-
tion algorithms and its depth of analysis.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—Memory manage-
ment (garbage collection)

General Terms
Design, Performance, Algorithms
Keywords
Java, Mark-Sweep, Semi-Space, Reference Counting, Generational

∗This work is supported by the following grants: ARC DP0452011,
NSF ITR CCR-0085792, NSF CCR-0311829, NSF EIA-0303609,
DARPA F33615-03-C-4106, and IBM. Any opinions, findings and
conclusions expressed herein are the authors and do not necessarily
reflect those of the sponsors.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specfic
permission and/or a fee.
SIGMETRICS/Performance’04, June 12–16, 2004, New York, NY, USA.
Copyright 2004 ACM 1-58113-873-3/04/0006 ...$5.00.

1. Introduction
Programmers are increasingly choosing object-oriented languages
such as Java with automatic memory management (garbage col-
lection) because of their software engineering benefits. Although
researchers have studied garbage collection for a long time [3, 22,
24, 30, 35, 42], few detailed performance studies exist. No previ-
ous study compares the effects of garbage collection algorithms on
instruction throughput and locality in the light of modern proces-
sor technology trends to explain how garbage collection algorithms
and programs can combine to yield good performance.

This work studies in detail the three canonical garbage collection
algorithms: semi-space, mark-sweep, and reference counting, and
three generational counterparts. These collectors encompass the
key mechanisms and policies from which essentially all garbage
collectors are composed. Our findings therefore have application
beyond these algorithms. We conduct our study in the Java memory
management toolkit (MMTk) [13] in IBM’s Jikes RVM [2, 1]. The
collectors are efficient, share all common mechanisms and policies,
and provide a clean and meaningful experimental platform [13].

The results use a wide range of heap sizes on SPEC JVM Bench-
marks to reveal the inherent space-time trade-offs of collector algo-
rithms. For fair comparisons, each experiment fixes the heap size,
and triggers collection when the program exhausts available mem-
ory. We use three architectures (Athlon, Pentium 4, PowerPC) and
find the same trends on all three. Each experiment divides total pro-
gram performance into mutator (application code) and collection
phases. The mutator phase includes some memory management
activity, such as the allocation sequence and for the generational
collectors, a write barrier. Hardware performance counters mea-
sure the L1, L2, and TLB misses for collector and mutator phases.
The experiments reveal the direct cost of garbage collection and its
indirect effects on mutator performance and locality.

Our first set of experiments confirm the widely held, but unexam-
ined hypothesis, that the locality benefits of contiguous allocation
improves the locality of the mutator. For the whole heap collectors
in small heaps, the more space efficient free-list mark-sweep col-
lector performs best because collection frequency dominates the lo-
cality benefit of contiguous allocation. As heap size increases, the
mutator locality advantage of contiguous allocation with copying
collection outweighs the space efficiency of mark-sweep. Contigu-
ous allocation provides fewer misses at all levels of the cache hier-
archy (L1, L2 and TLB). These results are counter to the myth that
collection frequency is always the first order effect that determines
total program performance. Further experiments reveal that most
of these locality benefits are for the young objects which motivates
a contiguous allocation for them in generational collectors.

The generational collectors divide newly allocated nursery ob-
jects from mature objects that survive one or more collections, and

25

collect the nursery independently and more frequently than the ma-
ture space [35, 42]. They work well when the rate of death among
the young objects is high. In order to collect the nursery indepen-
dently, the generational collectors use a write barrier which records
any pointer into the nursery from the mature objects. During a nurs-
ery collection, the collector assumes the referents of these pointers
are live to avoid scanning the entire mature generation. To imple-
ment the write barrier, the compiler generates a sequence of code
for every pointer store that at runtime records only those pointers
from the mature space into the nursery. The write barrier thus in-
duces direct mutator overhead between programs that use whole
heap versus generational collection.

Our experiments show that the generational collectors provide
better performance than the whole heap collectors in virtually all
circumstances. They significantly reduce collection time itself, and
their contiguous nursery allocation has a positive impact on local-
ity. We carefully measure the impact of the write barrier on the
mutator and find that their mutator cost is usually very low (often
2% or less), and even when high (14%), the cost is outweighed by
the improvements in collection time.

Comparing the generational collectors against each other, per-
formance differences are typically small. Two factors contribute
to this result. First, allocation order provides good spatial local-
ity for young objects even if the program briefly uses and discards
them. Second, the majority of reads are actually to the mature ob-
jects, but caching usually achieves good temporal locality for these
objects regardless of mature space policy. Some object demograph-
ics do however have a preference. For instance, generational col-
lection with a copying mature space works best when the mature
space references are dispersed and frequent. The mark-sweep ma-
ture space performs best, sometimes significantly, in small heaps
when its space efficiency reduces collector invocations.

The next section compares our study to previous collector per-
formance analysis studies, none of which consider this variety of
collectors in an apples-to-apples setting, nor do any include a simi-
lar depth of analysis or vary the architecture. We then overview the
collectors, a number of key implementation details, and the experi-
mental setting. The results section studies the three base algorithms
separating allocation and collection costs (as much as possible),
compares whole heap algorithms and their generational counter-
parts, and examines the cost of the generational write barrier. We
examine the impact of nursery size on performance and debunk the
myth that the nursery size should be tied to the L2 cache size. We
also examine mature space behaviors using a fixed-size nursery to
hold the mature space work load constant. We perform every ex-
periment on the nine benchmarks and three architectures, but select
representative results for brevity and clarity.

2. Related Work
To our knowledge, few studies quantitatively compare uniprocessor
garbage collection algorithms [5, 14, 27, 28, 40], and these studies
evaluate various copying and generational collectors. Our results
on copying collectors are similar to theirs, but they do not compare
with free-list mark-sweep or reference counting collectors, nor ex-
plore memory system consequences.

Attanasio et al. [5] evaluate parallel collectors on SPECjbb, fo-
cusing on the effect of parallelism on throughput and heap size
when running on 8 processors. They concluded that mark-sweep
and generational mark-sweep with a fixed-size nursery (16 MB or
64 MB) are equal and the best among all the collectors. Our data
shows that the generational are superior to whole heap collectors
especially with a variable-size nursery.

A few recent studies explore heap size effects on performance [14,

18, 32, 40], and as we show here, garbage collectors are very sensi-
tive to heap size, and in particular to tight heaps. Diwan et al. [25,
41], Hicks et al. [28], and others [15, 29] measure detailed, spe-
cific mechanism costs, and architecture influences [25], but do not
consider a variety of collection algorithms. Many researchers have
evaluated a range of memory allocators for C/C++ programs [9, 10,
11, 17, 21, 43], but this work does not include copying collectors
since C/C++ programs may store pointers arbitrarily.

Java performance analysis work either disabled garbage collec-
tion [23, 37] which introduces unnecessary memory fragmentation,
or hold it constant [32]. Kim and Hsu measure similar details as we
do, with simulation of IBM JDK 1.1.6, a Java JIT, using whole heap
mark-sweep algorithm with occasional compaction. Our work thus
stands out as the first thorough evaluation of a variety of different
garbage collection algorithms, how they compare and affect perfor-
mance using execution measurements and performance counters.
The comprehensiveness of our approach reveals new insights, such
as the most space efficient collection algorithms and the distinct lo-
cality patterns of young and old objects, suggests mechanisms for
matching algorithms to object demographics, and reveals perfor-
mance trade-offs each strategy makes.

We evaluate the reuse, modularity, portability, and performance
of MMTk in a separate publication [13]. In that work we do not ex-
plore generational collectors, nor measure and explain performance
differences between collectors. However, we do demonstrate that
MMTk combines modularity and reuse with high performance, and
we rely on that finding here. For example, collectors that share
functionality, such as root processing, copying, tracing, allocation,
or collection mechanisms, use the exact same implementation in
MMTk. In addition, the allocation and collector mechanisms per-
form as well as hand tuned monolithic counterparts written in Java
or C. The experiments in this paper thus offer true policy compar-
isons in an efficient setting.

3. Background
This section presents the garbage collection terminology, algori-
thms, and features that this paper compares and explores. It first
presents the algorithms, and then enumerates a few key implemen-
tation details. For a thorough treatment of algorithms, see Jones
and Lins [30], and Blackburn et al. for additional implementation
details [13].

In MMTk, a policy pairs one allocation mechanism with one col-
lection mechanism. Whole heap collectors use a single policy. Gen-
erational collectors divide the heap into age cohorts, and use one or
more policies [3, 42]. For generational and incremental algorithms,
such as reference counting, a write barrier remembers pointers. For
every pointer store, the compiler inserts write-barrier code. At exe-
cution time, this code conditionally records pointers depending on
the collector policy. Following the literature, the execution time
consists of the mutator (the program itself) and periodic garbage
collection. Some memory management activities, such as object
allocation and the write barrier, mix in with the mutator. Collection
can run concurrently with mutation, but this work uses a separate
collection phase. MMTk implements the following standard allo-
cation and collection mechanisms.

A Contiguous Allocator appends new objects to the end of a con-
tiguous space by incrementing a bump pointer by the size of
the new object.

A Free-List Allocator organizes memory into k size-segregated
free-lists. Each free list is unique to a size class and is com-
posed of blocks of contiguous memory. It allocates an object
into a free cell in the smallest size class that accommodates
the object.

26

A Tracing Collector identifies live objects by computing a transi-
tive closure from the roots (stacks, registers, and class vari-
ables/statics) and from any remembered pointers. It reclaims
space by copying live data out of the space, or by freeing
untraced objects.

A Reference Counting Collector counts the number of incoming
references for each object, and reclaims objects with no ref-
erences.

3.1 Collectors
All modern collectors build on these mechanisms. This paper ex-
amines the following whole heap collectors, and a generational
counterpart for each. The generational collectors use a copying
nursery for newly allocated objects.

SemiSpace: The semi-space algorithm uses two equal sized copy
spaces. It contiguously allocates into one, and reserves the other
space for copying into since in the worst case all objects could sur-
vive. When full, it traces and copies live objects into the other
space, and then swaps them. Collection time is proportional to the
number of survivors. Its throughput performance suffers because
it reserves half of the space for copying and it repeatedly copies
objects that survive for a long time, and its responsiveness suffers
because it collects the entire heap every time.

Implementation Details: Copying tracing implements the transi-
tive closure as follows. It enqueues the locations of all root refer-
ences, and repeatedly takes a reference from the locations queue.
If the referent object is uncopied, it copies the object, leaves a for-
warding address in the old object, enqueues the copied object on a
gray object queue, and adjusts the reference to point to the copied
object. If it previously copied the referent object, it instead ad-
justs the reference with the forwarding address. When the loca-
tions queue is empty, the collector scans each object on the gray
object queue. Scanning places the locations of the pointer fields of
these objects on the locations queue. When the gray object queue
is empty, it processes the locations queue again, and so on. It ter-
minates when both queues are empty. These experiments use a
depth-first order, because our experiments show it performs better
than the more standard breadth-first order [19]. MMTk supports
other orderings. SemiSpace has no write barrier.

MarkSweep: Mark-sweep uses a free-list allocator and a tracing
collector. When the heap is full, it triggers a collection. The col-
lection traces and marks the live objects using bit maps, and lazily
finds free slots during allocation. Tracing is thus proportional to the
number of live objects, and reclamation is incremental and propor-
tional to allocation. The tracing for MarkSweep is exactly the same
as SemiSpace, except that instead of copying the object, it marks a
bit in a live object bit map. Since MarkSweep is a whole heap col-
lector, its maximum pause time is poor and its performance suffers
from repeatedly tracing objects that survive many collections.

Implementation Details: The free-list uses segregated-fits with
a range of size classes similar to the Lea allocator [33]. MMTk
uses 51 size classes that attain a worst case internal fragmentation
of 1/8 for objects less than 255 bytes. The size classes are 4 bytes
apart from 8 to 63, 8 bytes apart from 64 to 127, 16 bytes apart
from 128 to 255, 32 bytes apart from 256 to 511, 256 bytes apart
from 512 to 2047, and 1024 bytes apart from 2048 to 8192. Small,
word-aligned objects get an exact fit—in practice, these are the vast
majority of all objects. All objects 8KB or larger get their own
block (see Section 3.2.3). MarkSweep has no write barrier. The
collector keeps the blocks of a size class in a circular list ordered
by allocation time. It allocates the first free element in the first
block. Finding the right fit is about 10% slower [13] than bump-
pointer allocation. The free-list stores the bit vector for each block
together with the block. Since block sizes vary from 256 bytes

to 8K bytes, this organization may be a source of some conflict
misses, but we leave that investigation for future work.

RefCount: The deferred reference-counting collector uses a free-
list allocator. During mutation, the write barrier ignores stores to
roots and logs mutated objects. It then periodically updates ref-
erence counts for root referents and generates reference count in-
crements and decrements using the logged objects. It then deletes
objects with a zero reference count and recursively applies decre-
ments. It uses trial deletion to detect cycles [7]. Collection time is
proportional to the number of dead objects, but the mutator load is
significantly higher than other collectors since it logs every mutated
heap object.

Implementation Details: RefCount uses object logging with co-
alescing [34]. RefCount thus records objects only the first time
the program modifies it, and buffers decrements for all its refer-
ent objects. At collection time, it (1) generates increments for all
root and modified object referents, thus coalescing intermediate up-
dates, (2) introduces temporary [7] increments for deferred objects
(e.g., roots), and (3) deletes objects with a zero count. When a ref-
erence count goes to zero, it puts the object back on the free-list by
setting a bit and it decrements all its referents. On the next collec-
tion, it includes a decrement for all temporary increments from the
previous collection.

GenCopy: The classic copying generational collector [3] allo-
cates into a young (nursery) space. The write barrier records point-
ers from mature to nursery objects. It collects when the nursery is
full, and promotes survivors into a mature semi-space. When the
mature space is exhausted, it collects the entire heap. When the
program follows the weak generational hypothesis [35, 42], i.e.,
many young objects die quickly and old objects survive at a higher
rate than young, GenCopy attains better performance than SemiS-
pace. GenCopy improves over SemiSpace in this case because it
repeatedly collects the nursery which yields a lot of free space, it
compacts the survivors which can improve mutator locality, and in-
curs the collection cost of the mature objects infrequently. It also
has better average pause times than SemiSpace, since the nursery
is typically smaller than the entire heap.

GenMS: This hybrid generational collector uses a copying nurs-
ery and the MarkSweep policy for the mature generation. It allo-
cates using a bump pointer and when the nursery fills up, triggers
a nursery collection. The write barrier, nursery collection, nursery
allocation policies, and mechanisms are identical to those for Gen-
Copy. The test for an exhausted heap must accommodate space
for copying an entire nursery full of survivors into the MarkSweep
space. GenMS should be better than MarkSweep for programs that
follow the weak generational hypothesis. In comparison with Gen-
Copy, GenMS can use memory more efficiently, since GenCopy
reserves half the heap for copying space. However, both Mark-
Sweep and GenMS can fragment the free space when objects are
distributed among size classes.

Infrequent collections can contribute to spreading consecutively
allocated (or promoted) objects out in memory. Both sources of
fragmentation can reduce locality. Mark-compact collectors can
reduce this fragmentation, but need one or two additional passes
over the live and dead objects [20].

GenRC This hybrid generational collector uses a copying nurs-
ery and RefCount for the mature generation [16]. It ignores muta-
tions to nursery objects by marking them as logged, and logs the
addresses of all mutated mature objects. When the nursery fills,
it promotes nursery survivors into the reference counting space.
As part of the promotion of nursery objects, it generates reference
counts for them and their referents. At the end of the nursery collec-
tion, GenRC computes reference counts and deletes dead objects,

27

as in RefCount. Since GenRC ignores the frequent mutations of the
nursery objects, it performs much better than RefCount. Collection
time is proportional to the nursery size and the number of dead ob-
jects in the RefCount space. With a small nursery and other collec-
tion triggers, pause times are very low [16]. RefCount and GenRC
are subject to the same free-list fragmentation issues as MarkSweep
and GenMS. However, since GenRC collects the mature space on
every collection, it is likely to maintain a smaller memory footprint.

3.2 Implementation Details
This section adds a few more implementation details about shared
mechanisms including the nursery size policies, inlining write bar-
riers and allocation, reference counting header, the large object
space, and the boot image.

3.2.1 Nursery size policies
By default, the generational collectors implement a variable nurs-
ery [3] whose initial size is half of the heap, the other half is re-
served for copying. Each nursery collection reduces the nursery by
the size of the survivors. When the available space for the nursery is
too small (256KB by default), it triggers a mature space collection.
MMTk also provides a bounded nursery which takes a command
line parameter as the initial nursery size, collects after the nursery is
full, and resizes the nursery below the bound only when the mature
space cannot accommodate a nursery of survivors. It shrinks using
the above variable nursery policy with the same lower bound. The
fixed nursery never reduces the size of the nursery, and thus trig-
gers a whole heap collection sooner than the bounded nursery of
the same size. The bounded nursery triggers more collections than
the variable nursery which uses space more efficiently, but when
the variable nursery is large, pause time suffers.

3.2.2 Write-barrier and allocation inlining
For the generational collectors, MMTk inlines the write-barrier fast
path which filters stores to nursery objects and thus does not record
most pointer updates, i.e., ignores between 93.7% to 99.9% of point-
er stores. The slow path makes the appropriate entries in the re-
membered set. Since the write barrier for RefCount is uncondi-
tional, it is fully inlined but forces the slow path object remem-
bering mechanism out-of-line to minimize code bloat and compiler
overhead [15]. SemiSpace and MarkSweep have no write barrier.

MMTk inlines the fast path for the allocation sequence. For
the copying and generational allocators, the inlined sequence con-
sists of incrementing a bump pointer and testing it against a limit
pointer. If the test fails (failure rate is typically 0.1%), the alloca-
tion sequence calls an out-of-line routine to acquire another block
of memory, which may trigger a collection.

For the MarkSweep and RefCount free-list allocators, the inline
allocation sequence consists of establishing the size class for the
allocation (for non-array types, the compiler statically evaluates the
size), and removing a free cell from the appropriate free-list, if such
a cell is available. If there is no available free cell, the allocation
path calls out-of-line to move to another block, or if there are no
more blocks of that size class, to acquire a new block.

3.2.3 Header, large objects, and boot image
MMTk has a two word (8 byte) header for each object, which con-
tains a pointer to the TIB (type information block located in the
immortal space, see below), hash bits, lock bits, and GC bits. A
one word header for MarkSweep collectors is possible, but not yet
implemented. Bacon et al. found that a one word header yields an
average of 2-3% improvement in overall execution [6]. RefCount
and the mature space in GenRC have an additional word (4 bytes)
in the object headers to accommodate the reference count.

MMTk allocates all objects 8KB or larger separately into a large
object space (LOS) using an integral number of pages. The genera-

tional collectors allocate large objects directly into this space. The
LOS uses the treadmill algorithm [8]. It records a pointer to each
object in a list. During whole heap collections, all of the collectors
but RefCount and GenRC trace the live large objects, placing them
on another list. They then reclaim any objects left on the original
list. RefCount and GenRC reference count the large objects at each
collection. MMTk does not a priori reserve space for the LOS, but
allocates it on demand.

The boot image contains various objects and precompiled classes
necessary for booting Jikes RVM, including the compiler, class-
loader, the garbage collector, and other essential elements of the
virtual machine as part of the Java-in-Java design. MMTk puts
these objects in an immortal space, and none of the collectors col-
lect them. All except RefCount and GenRC trace through the boot
image objects whenever they perform a while heap collection. Re-
fCount and GenRC assume all pointers out of the boot image are
live to avoid a priori assigning reference counts at boot time.

4. Methodology
This section describes Jikes RVM, our experimental platform, and
key benchmark characteristics.

4.1 IBM Jikes RVM
We use MMTk in Jikes RVM version 2.3.1+CVS1 [2, 1], with
patches to support performance counters and pseudo-adaptive com-
pilation. Jikes RVM is a high-performance VM written in Java with
an aggressive optimizing compiler [1, 2]. We use configurations
that precompile as much as possible, including key libraries and
the optimizing compiler and turn off assertion checking (the Fast
build-time configuration). The adaptive compiler uses sampling to
select methods to optimize, leading to high performance [4], but
a lack of determinism. Eechout et al. use statistical techniques to
show that including the adaptive compiler for short running pro-
grams skews the results to measure the virtual machine [26]. In ad-
dition, adaptive compiler variations result in changes to allocation
behavior and running time of the same run or runs with different
heap sizes. For example, sampling triggers compilation in different
methods, and the compilation of different write barriers for each
collector is part of the runtime system as well as the program and
induces both different mutator behavior and collector load [15].

Since our goal is to focus on application and garbage collection
interactions, our pseudo adaptive approach deterministically mim-
ics adaptive compilation.2 First we profile each benchmark five
times and select the best, collecting a log of the methods that the
adaptive compiler chooses to optimize. This log is then used as
deterministic compilation advice for the performance runs. For our
performance runs, we run two iterations of each benchmark. In the
first iteration, the compiler optimizes the methods in the advice file
on demand, and base compiles the others. Before the second itera-
tion, we perform a whole heap garbage collection to flush the heap
of compiler objects. We then measure the second iteration which
uses optimized code for hot methods and whose heap includes only
application objects. We perform this experiment five times and re-
port the fastest time. Our methodology thus avoids variations due
to adaptive compilation.

4.2 Experimental Platform
We perform our experiments on three architectures: Athlon, Pen-
tium 4, and Power PC. We present the Athlon results because it
performs the best and it has a relatively simpler memory hierarchy
that is easier to analyze.

1A 2.3.2 pre-release, cvs timestamp ‘2004/03/25 05:11:47 UTC’.
2Xianglong Huang and Narendran Sachindran jointly implemented
the pseudo adaptive compilation mechanism.

28

Source Field (p) Target Object (o = *p)
alloc alloc: % GC % Nur % Read % Focus % Read % Focus
MB min SemiSpace srv Nur Mat Imm Nur Mat Nur Mat Imm Nur Mat

202 jess 261 17:1 63 1 29 44 27 0.4 69 18 62 20 0.2 97
228 jack 231 17:1 53 3 25 39 36 0.1 6 21 50 28 0.1 7

205 raytrace 135 8:1 46 2 19 75 6 0.3 48 18 78 4 0.3 49
227 mtrt 142 7:1 51 5 20 75 6 0.3 21 19 77 5 0.3 21

213 javac 185 7:1 29 23 30 46 24 0.4 2 25 55 21 0.3 3
201 compress 99 6:1 8 0 97 0 3 11.0 3 61 39 0 6.9 712

pseudojbb 216 5:1 21 32 16 59 25 0.2 2 14 72 15 0.1 2
209 db 82 4:1 11 9 5 69 26 0.3 49 1 89 9 0.1 63

222 mpegaudio 3 1:1 0 – – – – – – – – – – –

Table 1: Benchmark Characteristics

We use a 1.9GHz AMD Athlon XP 2600+. It has a 64 byte L1
and L2 cache line size. The data and instruction L1 caches are
64KB 2-way set associative. It has a unified, exclusive 512KB 16-
way set associative L2 cache, and an 8 entry victim buffer [31]
between the two caches. The L2 holds only replacement victims
from the L1, and does not contain copies of data cached in the L1.
When the L1 data cache evicts a line, it goes to the victim buffer,
which in turn evicts the LRU line in the victim buffer into the L2.
The Athlon has 1GB of dual channel 333MHz DDR RAM config-
ured as 2 × 512MB DIMMs with an nForce2 K7N2G motherboard
and 333MHz front side bus. This machine is marketed by AMD as
being comparable to a 2.6GHz Pentium 4.

The 2.6GHz Pentium 4 uses hyperthreading. It has a 64 byte L1
and L2 cache line size, an 8KB 4-way set associative L1 data cache,
a 12Kµops L1 instruction trace cache, and a 512KB unified 8-way
set associative L2 on-chip cache. The machine has 1GB of dual
channel 400MHz DDR RAM configured as 2 × 512MB DIMMs
with an Intel i865 motherboard and 800MHz front side bus.

We also use a Apple Power Mac G5 with a 1.6HGz IBM Pow-
erPC 970. It has a 128 byte L1 and L2 cache line size, a 64KB
direct mapped L1 instruction cache and a 32KB 2-way set associa-
tive L1 data cache, and a 512KB unified 8-way set associative L2
on-chip cache. The machine has 768MB of 333MHz DDR RAM
with an Apple motherboard and 800MHz front side bus.

All three platforms run the same configuration of Debian Linux
with a 2.6.0 kernel. We run all experiments in a standalone mode
with all non essential daemons and services (including the network
interface) shut down. We instrument MMTk and Jikes RVM to use
the AMD and Intel performance counters to measure cycles, retired
instructions, L1 cache misses, L2 cache misses, and TLB misses
of both the mutator and collector as the collector algorithm, heap
size, and other features vary. Because of hardware limitations, each
performance counter requires a separate execution. We use version
2.6.5 of the perfctr Intel/x86 hardware performance counters for
Linux with the associated kernel patch and libraries [36]. At the
time of writing, perfctr was unavailable for the PowerPC 970.

4.3 Benchmarks
Table 1 shows key characteristics of each of our benchmarks. We
use the eight SPEC JVM benchmarks, and pseudojbb, a variant
of SPEC JBB2000 [38, 39] that executes a fixed number of trans-
actions to perform comparisons under a fixed garbage collection
load. The alloc column in Table 1 indicates the total number of
megabytes allocated. Our prior work reports on the adaptive com-
piler activity [13] and thus shows more allocation and higher ra-
tios of live data to allocation. However, Eeckhout et al. show
that the adaptive compiler swamps program behaviors, and thus the
methodology we use here exposes variations due to the program
instead of the VM. The alloc:min column quantifies the garbage
collection load with the ratio of total allocation to the minimum
heap size in which GenMS executes. For a heap size of 2 × the
minimum, the % GC SemiSpace shows the percentage of time

SemiSpace spends performing GC work. The Nur srv quantifies
generational behavior for a 4MB fixed size nursery using the per-
centage of allocated data that the collector copies out of the nursery.

The remaining columns indicate access patterns for object ac-
cesses. We instrument every pointer read ‘o = *p’ and count the
dereferenced field, p (columns 6–11), and the referent object, o
(last five columns). Table 1 includes the percentage of reads from
nursery (Nur), mature (Mat) and immortal (Imm) spaces. The fo-
cus presents the accesses in the nursery and mature space divided
by the number of bytes allocated in the nursery and mature space
respectively. For example, in 202 jess, 29% of the time p is the
nursery, and 18% of the time, the dereferenced object o is in the
nursery. The focus of accesses to p in the mature space (69) was
more than 100 times greater than accesses to p in the nursery (0.4).
A higher number reflects higher temporal locality. 202 jess pro-
motes only around 1% of data into the mature space, and yet 44%
of 202 jess’s field reads are to this 1%, while 29% are to the 99%
of objects that never survive the nursery.

We group programs according to Table 1. 202 jess, 228 jack,
205 raytrace, and 227 mtrt exhibit low nursery survival and

high ratios of total allocation to minimum live size. 213 javac,
pseudojbb, and 209 db have higher nursery survival, but a rel-
atively high heap turnover. Two programs have high nursery sur-
vival and do not exercise collection much: 201 compress and
222 mpegaudio. 201 compress allocates large objects, and

requires little garbage collection. 222 mpegaudio allocates less
than 4MB, and thus the generational collectors never collect it. The
first two groups of programs are thus better tests of memory man-
agement influences and policies and we focus on them. The results
section presents representative benchmarks which we discuss in de-
tail. Other benchmarks follow the same trends, except when noted.
Complete results included in a technical report [12].

5. Results
This section examines collector performance and its influence on
mutator and total performance using the Athlon. We first explain
how occasionally small changes in heap sizes cause variations in
collection time. We then compare the whole heap and generational
collectors, validating the uniform performance benefits of the weak
generational hypothesis [35, 42]. We then tease apart the influ-
ences of allocation and collection mechanisms. Contiguous allo-
cation yields better mutator locality than free-list allocation, but
the space-efficient free-list reduces total collector load. For most
programs, cache measurements reveal that the spatial locality of
objects allocated close together in time is key for nursery objects,
but not as important for mature objects. A fixed nursery isolates the
influence of the mature space collection policy, showing that muta-
tor performance is usually agnostic to mature space policies with a
few notable exceptions that need copying to achieve locality. How-
ever, when the mature space benefits from less frequent collection
in GenMS, total time improves. Varying the nursery size reveals
that frequent GC’s in the small nursery degrade collector perfor-

29

mance, and nursery sizes well above the L2 cache size perform
best. We then show that the same trends hold across the Athlon,
P4, and PPC architectures.

Figure 1 and subsequent figures plot total time, garbage col-
lection (GC) time, mutator time, and cache statistics for different
benchmarks as a function of heap size. The right y-axis expresses
time in seconds and the left normalizes to the fastest time. Heap
size is shown as a multiple of the smallest heap size in which the
particular application executes using GenMS on the bottom x-axis,
and in mega-bytes (MB) on top.

5.1 Collector Sensitivity to Heap Size
Figure 1 shows the general trend that up to some point increases
in heap size tend to decrease the frequency of garbage collection
and thus total time (see Figure 1). Each heap size is an independent
trial. In all our experiments, the variation between runs on the same
heap size is less than 1%. However, small changes in heap size can
produce what seem like chaotic behavior, such as the differences in
total and GC time between heap sizes 1 and 1.3 the minimum for
GenMS on 213 javac. The reason is that a small change in heap
size triggers collections at different points which changes which
objects a collector promotes. For instance, consider a program that
builds a large but relatively short lived pointer data structure. In a
small heap, the generational collection point happens just prior to
when the program builds the data structure, and in a slightly larger
heap it happens in the middle. In the second case, the collector pro-
motes the data structure, which dies shortly thereafter, but it does
not detect the death until a whole heap collection. In the meantime,
the increased heap occupancy triggers the next nursery collection
sooner, and so on. The exact timing of a collection can thus have
cascading positive as well as negative effects, and explains varia-
tions between nearby heap sizes.

5.2 Evaluating Generational Behavior
This section compares whole heap collectors to their generational
counterparts and explores the generational write-barrier cost. Fig-
ure 1 shows that for 202 jess, 209 db, and 213 javac the gen-
erational collectors perform much better than their whole heap vari-
ants. This result holds on all the benchmarks, although the low-
mortality, low GC load programs such as 201 compress only
benefit in small heaps. Generational collectors reduce GC time
for 202 jess by an order of magnitude, and even for 213 javac,
where 23% of nursery objects survive, GenCopy improves GC time
over SemiSpace by a factor of two, and GenMS improves over
MarkSweep. The generational collectors reduce GC time by reduc-
ing the cost of each collection through only examining the nursery.
Counting the number of collections (unshown) shows the reduc-
tions come from dramatically fewer collections as well. Because
collection costs are heap-size dependent, the impact of GC time on
total time is greatest in small to modestly sized heaps.

Examining mutator performance reveals that heap size does not
systematically influence mutator time. Although the application it-
self is unchanged by heap size, larger heap sizes will tend to spread
objects out more which makes this result counter intuitive. The

% Overhead %
202 jess 13.6
228 jack 1.7

205 raytrace 0.9
227 mtrt 2.9

213 javac 4.6
201 compress 0

pseudojbb 3.1
209 db 2.4

222 mpegaudio 0
Geometric mean 3.2

Table 2: Write Barrier Mutator Overhead For 4MB Nursery

mutator time is however strongly correlated with the GC algorithm,
where SemiSpace usually performs best. SemiSpace benefits from
no write barrier and faster allocation than MarkSweep. The genera-
tional collectors benefit from contiguous allocation. GenCopy and
SemiSpace perform about the same for 213 javac and 209 db,
whereas mutator performance in GenCopy is around 20% slower
than SemiSpace on 202 jess. We now show that this difference is
mostly due to the write barrier.

5.2.1 The Write Barrier: Friend or Foe?
To examine the cost of the write barrier, we use a new collector
which has the same heap organization, write barrier, and promotion
policies as GenCopy, but traces (but does not collect) the whole
heap at each collection. It collects the whole heap only when the
mature space is full. Because it always traces the entire heap, it
establishes liveness of nursery objects by reachability, so the write
barrier is not required for correctness. The garbage collection over-
head of this collector is substantial, so we do not recommend it,
but it yields an experimental platform in which we can include or
exclude the write barrier while holding all other factors constant,
such as the heap organization and promotion policy.

Table 2 shows the overhead of the standard MMTk generational
write barrier on mutator performance with a 4MB nursery and a
moderate heap (3 × minimum) on the Athlon platform. We show
the percentage slowdown in the mutator when using the write bar-
rier relative to mutator performance without the barrier. The over-
head is low, 3.2% on average (3.1% for the P4 and 1.9% for the
PPC). 202 jess suffers a substantial mutator slowdown. Table 1
indicates the high mortality rate and concentration of accesses to
the few objects that do survive as the cause of the heavy write bar-
rier traffic for 202 jess. However, the previous section shows that
the massive reduction in collection costs swamps the mutator over-
head in such a setting. Other benchmarks show very low overheads.
For example in 222 mpegaudio, it never collects, thus no objects
are ever in the large space, and the write barrier test never adds to
the remembered sets. The multi-issue architecture thus completely
hides its cost in unused issue slots. So while the write barrier has
the potential to be expensive, its overhead is usually very low, and
the advantages seen at collection time far outweigh the cost.

The combination of good mutator performance and outstand-
ing GC performance is clear in the total time results. Even in
213 javac which has low infant mortality and in 209 db which

has low GC work load, the generational collectors perform bet-
ter than the whole heap collectors. In 202 jess, the advantage
for the generational collectors is dramatic. This data supports the
weak generational hypothesis, and indicates even when it is less
true, generational collectors offer benefits.

5.3 Allocation: Free List versus Contiguous
The essential allocator choice is free-list or contiguous, which in
turn dictates the choice of collection algorithm. Free-list allocation
is more expensive than contiguous allocation, but permits incre-
mental freeing and obviates the need for a copy reserve. Contigu-
ous allocations provide spatial locality for objects allocated close
together in time, whereas free-list allocation may spread out these
objects. To reveal the allocation time trade-offs, we examine their
impact on the mutator. Since both RefCount and MarkSweep use
the same free-list allocator, our analysis focuses on MarkSweep
and GenMS, which are simpler than RefCount and GenRC.

5.3.1 Mutator costs in whole heap collectors
The contiguous and free-list allocators directly impact mutator per-
formance as a consequence of the mutator allocation cost and the
collection policies they impose. They also impact on the mutator
through their locality effects.

30

 1

 1.5

 2

 2.5

 3

 1 2 3 4 5 6

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

20 30 40 50 60 70 80 90 100

N
or

m
al

iz
ed

 T
im

e

T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

SemiSpace
MarkSweep

RefCount
GenCopy

GenMS
GenRC

(a) 202 jess Total Time

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 1.45

 1.5

 1 2 3 4 5 6

 14

 15

 16

 17

 18

 19

20 40 60 80 100 120

N
or

m
al

iz
ed

 T
im

e

T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

SemiSpace
MarkSweep

RefCount
GenCopy

GenMS
GenRC

(b) 209 db Total Time

 1

 1.5

 2

 2.5

 3

 1 2 3 4 5 6

 5

 6

 7

 8

 9

 10

 11

 12

20 40 60 80 100 120 140 160

N
or

m
al

iz
ed

 T
im

e

T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

SemiSpace
MarkSweep

RefCount
GenCopy

GenMS
GenRC

(c) 213 javac Total Time

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 1 2 3 4 5 6

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

20 30 40 50 60 70 80 90 100

N
or

m
al

iz
ed

 G
C

 T
im

e

G
C

 T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

SemiSpace
MarkSweep

RefCount
GenCopy

GenMS
GenRC

(d) 202 jess GC Time

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 1 2 3 4 5 6

 1

 2

 3

 4

 5

 6

 7

 8

 9

20 40 60 80 100 120

N
or

m
al

iz
ed

 G
C

 T
im

e

G
C

 T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

SemiSpace
MarkSweep

RefCount
GenCopy

GenMS
GenRC

(e) 209 db GC Time

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 1 2 3 4 5 6

 0.5

 1

 1.5

 2

 2.5

20 40 60 80 100 120 140 160

N
or

m
al

iz
ed

 G
C

 T
im

e

G
C

 T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

SemiSpace
MarkSweep

RefCount
GenCopy

GenMS
GenRC

(f) 213 javac GC Time

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 1.45

 1.5

 1 2 3 4 5 6

 2

 2.1

 2.2

 2.3

 2.4

 2.5

 2.6

 2.7

 2.8

 2.9

20 30 40 50 60 70 80 90 100

N
or

m
al

iz
ed

 M
ut

at
or

 T
im

e

M
ut

at
or

 T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

SemiSpace
MarkSweep

RefCount
GenCopy

GenMS
GenRC

(g) 202 jess Mutator Time

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 1.45

 1.5

 1 2 3 4 5 6

 13

 14

 15

 16

 17

 18

20 40 60 80 100 120

N
or

m
al

iz
ed

 M
ut

at
or

 T
im

e

M
ut

at
or

 T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

SemiSpace
MarkSweep

RefCount
GenCopy

GenMS
GenRC

(h) 209 db Mutator Time

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 1.45

 1.5

 1 2 3 4 5 6

 4

 4.2

 4.4

 4.6

 4.8

 5

 5.2

 5.4

 5.6

20 40 60 80 100 120 140 160

N
or

m
al

iz
ed

 M
ut

at
or

 T
im

e

M
ut

at
or

 T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

SemiSpace
MarkSweep

RefCount
GenCopy

GenMS
GenRC

(i) 213 javac Mutator Time
Figure 1: Total, Mutator and GC Performance of All Six Collectors

We first measure an upper bound on the time the program spends
in contiguous allocation by pushing the allocation sequence out-of-
line. This cost typically ranges from 1% to at most 10% of to-
tal time. We then use a micro benchmark to establish the relative
costs of the two mechanisms. The benchmark allocates objects of
the same size in a tight loop. Contiguous allocation is 11% faster
than the free-list allocation, allocating at 726 MB/s and 654 MB/s
respectively. (We recently reported slower times on an older ar-
chitecture [13].) Since allocation time is less than 10%, this small
difference between the mechanisms reduces to less than 1% of to-
tal time, and excludes the allocation sequence as a major source of
variation.

Figure 2 examines mutator time and memory hierarchy perfor-
mance for 202 jess, 209 db, and pseudojbb which have repre-
sentative behaviors, plotting mutator time, L1 misses, L2 misses,
and TLB misses as a function of heap size on a log scale. First
consider SemiSpace and MarkSweep. SemiSpace mutator perfor-
mance improvements range from 7 to 15% over MarkSweep (only
on 201 compress and 222 mpegaudio is free-list allocation
within 5%). The limit analysis above indicates that the direct ef-
fect of the allocator is typically 1% or less of this difference. Since
the application code is otherwise identical, second order effects
must dominate. 202 jess, 209 db, and pseudojbb each show a
strong and consistent correlation between cache memory and mu-

tator performance, where SemiSpace always improves over Mark-
Sweep. Contiguous allocation in SemiSpace thus offers locality
from two sources: allocation order and copying compaction. Free-
list allocation in MarkSweep degrades program locality. The muta-
tor benefit of SemiSpace over MarkSweep is relatively insensitive
to heap size, thus suggesting that this benefit is from allocation lo-
cality rather than mature object compaction. An exception is the
TLB performance on 202 jess, where the four copying collectors
show a sharp reduction in TLB misses at smaller heap sizes, pre-
sumably due to collection-induced locality. However, L1 misses
appear to dominate, so the reduction in TLB misses does not trans-
late to a reduction in mutator time.

5.3.2 Mutator costs in generational collectors
We perform the following experiment to examine more closely whe-
ther SemiSpace locality is mostly due to the allocation order or the
copying compaction of mature objects. We hold the work load on
the mature space constant with a fixed-size nursery variant of the
generational collectors. The young objects thus are all in allocation
order. Since young objects are collected at the same frequency,
only the mature space collection policies differ. Figure 3 shows the
geometric mean of mutator performance across all benchmarks.

When the nursery size is fixed, GenCopy and GenMS have very
similar mutator performance. The locality of mature space objects
is thus not a dominant effect on mutator performance. As Sec-

31

 1

 2

 4

 1 2 3 4 5 6

M
ut

at
or

 T
im

e
(s

ec
)

(lo
g)

Heap size relative to minimum heap size

SemiSpace
MarkSweep

RefCount
GenCopy

GenMS
GenRC

(a) 202 jess Mutator Time

 8

 16

 1 2 3 4 5 6

M
ut

at
or

 T
im

e
(s

ec
)

(lo
g)

Heap size relative to minimum heap size

SemiSpace
MarkSweep

RefCount
GenCopy

GenMS
GenRC

(b) 209 db Mutator Time

 4

 8

 1 2 3 4 5 6

M
ut

at
or

 T
im

e
(s

ec
)

(lo
g)

Heap size relative to minimum heap size

SemiSpace
MarkSweep

GenCopy
GenMS
GenRC

(c) pseudojbb Mutator Time

 16

 32

 64

 1 2 3 4 5 6

M
ut

at
or

 L
1

M
is

se
s

(m
ill

io
ns

)
(lo

g)

Heap size relative to minimum heap size

SemiSpace
MarkSweep

RefCount
GenCopy

GenMS
GenRC

(d) 202 jess Mutator L1

 64

 128

 256

 1 2 3 4 5 6

M
ut

at
or

 L
1

M
is

se
s

(m
ill

io
ns

)
(lo

g)

Heap size relative to minimum heap size

SemiSpace
MarkSweep

RefCount
GenCopy

GenMS
GenRC

(e) 209 db Mutator L1

 32

 64

 1 2 3 4 5 6

M
ut

at
or

 L
1

M
is

se
s

(m
ill

io
ns

)
(lo

g)

Heap size relative to minimum heap size

SemiSpace
MarkSweep

GenCopy
GenMS
GenRC

(f) pseudojbb Mutator L1

 0.5

 1

 2

 4

 8

 1 2 3 4 5 6

M
ut

at
or

 L
2

M
is

se
s

(m
ill

io
ns

)
(lo

g)

Heap size relative to minimum heap size

SemiSpace
MarkSweep

RefCount
GenCopy

GenMS
GenRC

(g) 202 jess Mutator L2

 64

 128

 1 2 3 4 5 6

M
ut

at
or

 L
2

M
is

se
s

(m
ill

io
ns

)
(lo

g)

Heap size relative to minimum heap size

SemiSpace
MarkSweep

RefCount
GenCopy

GenMS
GenRC

(h) 209 db Mutator L2

 8

 16

 32

 1 2 3 4 5 6

M
ut

at
or

 L
2

M
is

se
s

(m
ill

io
ns

)
(lo

g)

Heap size relative to minimum heap size

SemiSpace
MarkSweep

GenCopy
GenMS
GenRC

(i) pseudojbb Mutator L2

 0.25

 0.5

 1

 2

 4

 8

 16

 1 2 3 4 5 6

M
ut

at
or

 T
LB

 M
is

se
s

(m
ill

io
ns

)
(lo

g)

Heap size relative to minimum heap size

SemiSpace
MarkSweep

RefCount
GenCopy

GenMS
GenRC

(j) 202 jess Mutator TLB

 16

 32

 64

 128

 1 2 3 4 5 6

M
ut

at
or

 T
LB

 M
is

se
s

(m
ill

io
ns

)
(lo

g)

Heap size relative to minimum heap size

SemiSpace
MarkSweep

RefCount
GenCopy

GenMS
GenRC

(k) 209 db Mutator TLB

 4

 8

 16

 32

 1 2 3 4 5 6

M
ut

at
or

 T
LB

 M
is

se
s

(m
ill

io
ns

)
(lo

g)

Heap size relative to minimum heap size

SemiSpace
MarkSweep

GenCopy
GenMS
GenRC

(l) pseudojbb Mutator TLB

Figure 2: Mutator time and L1, L2 and TLB misses for all six collectors collectors (log scale).

tion 5.4.1 discusses in more detail, the variable-size nursery attains
a space advantage when combined with GenMS which reduces the
number of nursery collections, a direct benefit. The indirect benefit
is slightly improved locality for nursery objects since they stay in
allocation order in the nursery for longer. Figure 3 suggests that
mature object compaction in the free-list will be of little use for
these programs. However, Figure 2 reveals the two exceptions to
this rule: 209 db and pseudojbb.

The most striking counterpoint is 209 db, where the genera-
tional collectors make little impact on mutator time. Even the copy-
ing nursery in GenMS provides no advantage over MarkSweep.
GenCopy slightly degrades mutator locality compared with SemiS-

pace, due to the write barrier (see Table 2). Section 4.3 shows that
209 db is dominated by mature space accesses, and thus nursery

locality is immaterial for 209 db.
In pseudojbb, the copying nursery benefits GenMS compared

to MarkSweep, but GenCopy still performs significantly better than
both. This suggests that pseudojbb has mature space access pat-
terns which are locality sensitive. The access pattern statistics in
Section 4.3 confirm this result. Mature space is accessed more
heavily by pseudojbb, but the accesses are relatively unfocused.

Together the whole heap and generational results indicate that
free-list allocation significantly degrades locality, whereas contigu-
ous allocation achieves locality on young objects from allocation

32

 8

 16

 1 2 3 4 5 6

M
ut

at
or

 T
im

e
(s

ec
)

(lo
g)

Heap size relative to minimum heap size

SemiSpace
MarkSweep

GenCopy Fixed 4MB
GenMS Fixed 4MB

Figure 3: Mutator time for whole heap and fixed-size nursery
collectors, geometric mean across all benchmarks

order. Furthermore, a copying nursery ameliorates the locality pen-
alty of the mature space free-list in all but 209 db and pseudojbb,
where mature-space reads play a large role.

5.4 Collection: How, when, and whether?
The choice of allocation mechanism also governs the choice of col-
lection mechanisms. We now examine the time and space over-
heads of the collection algorithms, and their influence on mutator
locality. We consider how frequently to collect. We also show that
our results are consistent across architectures, and then discuss if
we should choose garbage collection at all.

5.4.1 Garbage collection costs
Contiguous allocation dictates copying collection which requires
a copy reserve. The SemiSpace, GenCopy, and GenMS collec-
tor performance graphs reflect this copying space overhead which
leads to many more collections than pure MarkSweep—SemiSpace
typically collects between 1.5 and 2 times as often as MarkSweep
for a given heap size. For example, GC time in Figure 2 for SemiS-
pace is typically at least 50% worse than MarkSweep. We mea-
sured the tracing rates for SemiSpace and MarkSweep on a mi-
cro benchmark: they are very close (59.5MB/sec and 59.2MB/sec)
which means that the frequency of collection is the source of the
overhead. In addition, GenMS with a variable nursery reduces the
number of nursery collections over GenCopy because it is more
space efficient. The first order effect of fewer collections is re-
duced collection time. A second order effect could be fewer cache
line displacements to collector invocations. The stability of the mu-
tator cache performance as a function of heap size in the face of
dramatic differences in numbers of collections dissuades us of this
hypothesis.

5.4.2 Trading off collection cost and mutator locality
Total performance is of course a function of the mutator and col-
lector performance. While contiguous allocation offers a signifi-
cant mutator advantage, its copy reserve requirement results in a
substantial overhead. In small heap sizes, collection time typically
swamps total performance and overwhelms mutator locality differ-
ences; MarkSweep outperforms SemiSpace. In large heaps, muta-
tor time dominates and SemiSpace outperforms MarkSweep. Fig-
ure 1 illustrates the crossovers in total performance for MarkSweep
and SemiSpace on 213 javac and 202 jess.

As Sections 5.3.1 and 5.3.2 establish, the locality advantage of
contiguous allocation is greatest among the young objects. These
results indicate that the copying nursery combined with a space
efficient MarkSweep mature space offers a good combination of
locality benefits and reduced collection costs. However, when ma-
ture space locality dominates, such as in 209 db, GenCopy can
perform best.

5.4.3 Tracing or Reference Counting?
With a free-list, the collector can either trace the live objects from
the roots or count references. Continuously tracking the number

MarkSweep mutator SemiSpace mutator
1.5× min ratio 1.5× min ratio

GCs time (s) ∞/1.5× GCs time (s) ∞/1.5×
202 jess 27 2.48 0.97 50 1.97 1.18
228 jack 25 2.39 0.97 49 2.11 1.08

205 raytrace 10 2.35 0.98 25 2.04 1.06
227 mtrt 9 2.38 1.04 26 2.1 1.07

213 javac 12 4.57 0.99 28 3.8 1.03
201 compress 7 5.47 1.00 7 5.41 0.99

pseudojbb 9 7.21 1.00 32 6.04 1.07
209 db 5 13.78 1.01 22 12.81 0.86

222 mpegaudio 0 10.57 0.93 0 9.77 1.00
Geometric mean 8 4.57 0.99 18 4.02 1.03

Table 3: Impact of very large heap size on mutator time

of references to each object is expensive, even with aggressive op-
timizations [22, 34], which the MMTk implementation also uses.
This result is evident in Figure 1, where RefCount performs dra-
matically worse than MarkSweep for 202 jess and 213 javac.
RefCount performs well on 201 compress, but this application is
atypical. As discussed in Sections 5.2 and 5.3, there is compelling
evidence for a generational policy with a copying nursery and a
free-list in the mature space. The distinctly different demographics
of young and old objects further motivate a hybrid generational ref-
erence counting policy [16]. Figure 1 shows that GenRC performs
similar to the other generational collectors, except in 213 javac,
which has an unusually large amount of cyclic data structures [7].
The performance of GenRC is sensitive to the frequency of cycle
detection, which we did not tune in these experiments. GenRC
holds a potential locality and space advantage over GenMS be-
cause it promptly reclaims dead mature space objects, and thus can
more tightly pack the free-list. GenRC performs reference counting
at every nursery collection whereas GenMS infrequently performs
whole heap collections. This promise is not borne out in Figure 1,
but may be a reflection of the immaturity of the GenRC implemen-
tation rather than on the fundamentals of the algorithm.

5.4.4 How often?
We now examine the limits of not collecting, and then examine how
often to collect the nursery.

If the heap is never collected and memory is monotonically con-
sumed, the spatial locality of older objects should gradually de-
grade as neighboring objects die. Assuming an approximately uni-
form death rate over time, fragmentation will be an exponential
function of age—older objects being the most fragmented, and the
very most recently allocated objects suffering no fragmentation. To
examine this effect, Table 3 compares the mutator time for each
benchmark using contiguous and free-list allocation with a modest
heap (1.5× minimum), and an uncollected heap, large enough to
avoid triggering any collection. For these benchmarks, 900MB is
adequate. Only 202 jess follows the hypothesis that never col-
lecting degrades performance. Since 202 jess has a high heap
turn over and some accesses to mature space, it does suffer some
fragmentation that degrades mutator performance when the heap is
never collected.

Most of the other benchmarks have about the same mutator per-
formance in the uncollected heap (∞) as in the modest heap. At first
this result seems a little surprising in light of the inevitable degra-
dation in locality among the older objects. However, as Section 5.3
showed, the spatial locality of the mature objects is not a dominant
factor for these benchmarks. 209 db actually achieves better per-
formance without collection because it attains good locality from
contiguous allocation and it has low GC work load. Blackburn et
al. found for a more memory constrained machine, never collecting
caused severe degradations in 209 db due to paging [14]. Table 1
together with mutator locality results indicate that all of the other
programs have a slight majority of accesses to a few mature objects

33

 4

 8

 64 256 1024 4096 16384 65536

M
ut

at
or

 T
im

e
(s

ec
)

(lo
g)

Nursery Size (KB) (log)

GenCopy
GenMS

(a) Mutator Time

 0.125

 0.25

 0.5

 1

 2

 64 256 1024 4096 16384 65536

G
C

 T
im

e
(s

ec
)

(lo
g)

Nursery Size (KB) (log)

GenCopy
GenMS

(b) GC Time

 4

 8

 64 256 1024 4096 16384 65536

T
im

e
(s

ec
)

(lo
g)

Nursery Size (KB) (log)

GenCopy
GenMS

(c) Total Time

 32

 64

 64 256 1024 4096 16384 65536

M
ut

at
or

 L
1

M
is

se
s

(m
ill

io
ns

)
(lo

g)

Nursery Size (KB) (log)

GenCopy
GenMS

(d) L1 Mutator Misses

 8

 16

 64 256 1024 4096 16384 65536

M
ut

at
or

 L
2

M
is

se
s

(m
ill

io
ns

)
(lo

g)

Nursery Size (KB) (log)

GenCopy
GenMS

(e) L2 Mutator Misses

 4

 8

 16

 64 256 1024 4096 16384 65536

M
ut

at
or

 T
LB

 M
is

se
s

(m
ill

io
ns

)
(lo

g)

Nursery Size (KB) (log)

GenCopy
GenMS

(f) TLB Mutator Misses

 0.5

 1

 2

 4

 8

 16

 64 256 1024 4096 16384 65536

G
C

 L
1

M
is

se
s

(m
ill

io
ns

)
(lo

g)

Nursery Size (KB) (log)

GenCopy
GenMS

(g) L1 GC Misses

 0.25

 0.5

 1

 2

 4

 64 256 1024 4096 16384 65536

G
C

 L
2

M
is

se
s

(m
ill

io
ns

)
(lo

g)

Nursery Size (KB) (log)

GenCopy
GenMS

(h) L2 GC Misses

 0.03125

 0.0625

 0.125

 0.25

 0.5

 1

 64 256 1024 4096 16384 65536

G
C

 T
LB

 M
is

se
s

(m
ill

io
ns

)
(lo

g)

Nursery Size (KB) (log)

GenCopy
GenMS

(i) TLB GC Misses
Figure 4: Performance Effect of Nursery Size, 128KB to 32MB (log scale)

with good temporal locality, and accesses to a very large number
of young objects with poor temporal locality (typically used briefly
then discarded). Thus, compression of mature space objects is not
an important source of locality in these programs. We expect that
server applications, and others with large memory usage and foot
prints will follow 202 jess more than these results.

5.4.5 Sizing the nursery
Given the performance advantages of generational collection, we
now examine the influence of the nursery size. Figure 4 shows
the performance of GenMS and GenCopy over a wide range of
bounded nursery sizes (128KB to 32MB), running in a very large
heap (900MB). Note the x-axis in this figure is nursery size, rather
than heap size as in all the other figures in this paper. Figure 4(a)
shows a small improvement with larger nurseries in mutator perfor-
mance due to fewer L2 (Figure 4(e)) and TLB misses (Figure 4(f)).
However, the difference in GC time dominates: smaller nurseries
demand more frequent collection and thus a substantially higher
load. We measured the fixed overhead of each collection and found
that each invocation of a collection scanned around 64KB of roots.
These fixed costs become significant when the nursery is as small
as 128KB. The garbage collection cost tapers off between 4MB and
8MB as the fixed collection costs become insignificant. These re-
sults debunk the myth that the nursery size should be matched to
the L2 cache size (512KB on all three architectures).

5.5 Architecture influences
Figure 5 compares the geometric mean of the benchmarks for all
6 collectors on the P4, Athlon, and PPC. The x-axis is heap size,
and the y-axis is time. The P4 has the fastest clock speed, followed
by the Athlon, and then the PPC. Intel would like us to believe
that this ordering means the P4 will perform the best. Instead, the
Athlon performs about 20% better. For the generational collectors,
even the PPC is close to the P4. The Athlon’s advantage comes
from substantially fewer cache misses than the P4 (compare Fig-
ures 2 and 6). Due to the Athlon’s exclusive cache architecture,
substantially larger L1 and higher associativity L2, it simply has
more effective cache and this advantage dominates clock speed.

The collectors follow the same trends discussed above on all of
the architectures. The generational collectors perform best on all
architectures due to reductions in collection time and locality from
contiguous nursery allocation. However the difference is more pro-
nounced on the PPC than the P4 or Athlon which suggests reduc-
tions in the influence of collection time on faster processors. The
space advantage of MarkSweep over SemiSpace, and the locality
advantage of SemiSpace over MarkSweep show different cross-
over points on each architecture. The faster the clock speed, the
closer the cross-over point moves towards the minimum heap size,
i.e., the cross-over where SemiSpace improves over MarkSweep is
2.2 for the P4, 3.4 for the Athlon, and 4 for the PPC. This trend

34

 1

 1.5

 2

 2.5

 3

 1 2 3 4 5 6

 6

 8

 10

 12

 14

20 40 60 80 100

N
or

m
al

iz
ed

 T
im

e

T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

SemiSpace
MarkSweep

RefCount
GenCopy

GenMS
GenRC

(a) P4

 1

 1.5

 2

 2.5

 3

 1 2 3 4 5 6

 6

 8

 10

 12

 14

20 40 60 80 100

N
or

m
al

iz
ed

 T
im

e

T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

SemiSpace
MarkSweep

RefCount
GenCopy

GenMS
GenRC

(b) Athlon

 1

 1.5

 2

 2.5

 3

 1 2 3 4 5 6

 6

 8

 10

 12

 14

20 40 60 80 100

N
or

m
al

iz
ed

 T
im

e

T
im

e
(s

ec
)

Heap size relative to minimum heap size

Heap size (MB)

SemiSpace
MarkSweep

RefCount
GenCopy

GenMS
GenRC

(c) PPC
Figure 5: Total time on three architectures

 64

 128

 256

 1 2 3 4 5 6

M
ut

at
or

 L
1

M
is

se
s

(m
ill

io
ns

)
(lo

g)

Heap size relative to minimum heap size

SemiSpace
MarkSweep

RefCount
GenCopy

GenMS
GenRC

(a) 202 jess Mutator L1

 8

 16

 32

 64

 1 2 3 4 5 6

M
ut

at
or

 L
2

M
is

se
s

(m
ill

io
ns

)
(lo

g)

Heap size relative to minimum heap size

SemiSpace
MarkSweep

RefCount
GenCopy

GenMS
GenRC

(b) 202 jess Mutator L2

 32

 64

 128

 1 2 3 4 5 6

M
ut

at
or

 T
LB

 M
is

se
s

(m
ill

io
ns

)
(lo

g)

Heap size relative to minimum heap size

SemiSpace
MarkSweep

RefCount
GenCopy

GenMS
GenRC

(c) 202 jess Mutator TLB

Figure 6: P4 mutator L1, L2 and TLB misses for 202 jess (log scale). Compare with Figures 2(d), 2(g) and 2(j).

suggests that for future processors that the locality advantages of
contiguous allocation will become even more pronounced.

5.6 Is garbage collection a good idea?
The software engineering benefits of garbage collection over ex-
plicit memory management are widely accepted, but the perfor-
mance trade-off in languages designed for garbage collection is un-
explored. Section 5.3 shows a clear mutator performance advantage
for contiguous over free-list allocation, and the architectural com-
parison shows that architectural trends should make this advantage
more pronounced. The traditional explicit memory management
use of malloc() and free() is tightly coupled to the use of a
free-list allocator—in fact the MMTk free-list allocator implemen-
tation is based on Lea allocator [33], which is the default allocator
in standard C libraries. Standard explicit memory management is
thus unable to exploit the locality advantages of contiguous allo-
cation. It is therefore possible that garbage collection presents a
performance advantage over explicit memory management on cur-
rent or future architectures. A striking example of this is seen in
Figures 1(a) and 1(g), where the total time for GenMS matches or
betters the mutator time for MarkSweep. Further explortation of
this is unfortunately beyond our scope. Another alternative—not
reclaiming memory at all—is unsustainable.

6. Conclusion
This study examines the implications of the key policy choices in
memory management on collection time, space, mutator locality,
mutator performance, and total performance. A few key observa-
tions emerge. First, even if programs do not follow the generational
hypothesis, the contiguous allocation of a copying nursery offers
locality benefits that indicate the weak generational collectors are
always the collectors of choice. As a corollary, although many ac-
cesses go to mature objects, their performance relies on temporal
locality, whereas in the nursery, allocation order provides good spa-

tial locality for young objects that die quickly. We also show that
the cost of the generational write barrier is usually low. Secondly,
the choice of mature space collector should not only be dictated by
the space efficiency, which would always prefer MarkSweep, but
should also include the rate of death among the mature objects, and
the access and mutation rate of the mature space. If these rates are
high, a copying mature space can attain better mutator locality that
in the end overcomes its higher collection time penalty. These re-
sults can guide users to the right collector for their program, and
offer insights to memory management designers for future collec-
tors that could tune themselves on long running applications.

7. REFERENCES
[1] B. Alpern et al. Implementing Jalapeño in Java. In ACM

Conference on Object-Oriented Programming Systems,
Languages, and Applications, pages 314–324, Denver, CO,
Nov. 1999.

[2] B. Alpern et al. The Jalapeño virtual machine. IBM Systems
Journal, 39(1):211–238, February 2000.

[3] A. W. Appel. Simple generational garbage collection and fast
allocation. Software Practice and Experience,
19(2):171–183, 1989.

[4] M. Arnold, S. J. Fink, D. Grove, M. Hind, and P. Sweeney.
Adaptive optimization in the Jalapeño JVM. In ACM
Conference on Object-Oriented Programming Systems,
Languages, and Applications, pages 47–65, Minneapolis,
MN, October 2000.

[5] C. R. Attanasio, D. F. Bacon, A. Cocchi, and S. Smith. A
comparative evaluation of parallel garbage collectors. In
Languages and Compilers for Parallel Computing, Lecture
Notes in Computer Science. Springer-Verlag, 2001.

[6] D. Bacon, S. Fink, and D. Grove. Space- and time-efficient
implementations of the Java object model. In Proceedings of
the European Conference on Object-Oriented Programming
(ECOOP), pages 111–132. ACM Press, June 2002.

[7] D. F. Bacon and V. T. Rajan. Concurrent cycle collection in

35

reference counted systems. In J. L. Knudsen, editor, Proc. of
the 15th ECOOP, volume 2072 of Lecture Notes in
Computer Science, pages 207–235. Springer-Verlag, 2001.

[8] H. G. Baker. The Treadmill: Real-time garbage collection
without motion sickness. ACM SIGPLAN Notices,
27(3):66–70, 1992.

[9] E. D. Berger, K. S. McKinley, R. D. Blumofe, and P. R.
Wilson. Hoard: A scalable memory allocator for
multithreaded applications. In ACM Conference on
Architectural Support for Programming Languages and
Operating Systems, Cambridge, MA, Nov. 2000.

[10] E. D. Berger, B. G. Zorn, and K. S. McKinley. Composing
high-performance memory allocators. In ACM SIGPLAN
Conference on Programming Languages Design and
Implementation, pages 114–124, Salt Lake City, UT, June
2001.

[11] E. D. Berger, B. G. Zorn, and K. S. McKinley. Reconsidering
custom memory allocation. In ACM Conference on
Object-Oriented Programming Systems, Languages, and
Applications, pages 1–12, Seattle, WA, Nov. 2002.

[12] S. M. Blackburn, P. Cheng, and K. S. McKinley. Myths and
realities: The performance impact of garbage collection.
Technical Report TR-CS-04-04, Dept. of Computer Science,
Australian National University, 2004.

[13] S. M. Blackburn, P. Cheng, and K. S. McKinley. Oil and
water? High performance garbage collection in Java with
JMTk. In ICSE, Scotland, UK, May 2004.

[14] S. M. Blackburn, R. E. Jones, K. S. McKinley, and J. E. B.
Moss. Beltway: Getting around garbage collection gridlock.
In Proc. of SIGPLAN 2002 Conference on PLDI, pages
153–164, Berlin, Germany, June 2002.

[15] S. M. Blackburn and K. S. McKinley. In or out? Putting
write barriers in their place. In ACM International
Symposium on Memory Management, pages 175–183,
Berlin, Germany, June 2002.

[16] S. M. Blackburn and K. S. McKinley. Ulterior reference
counting: Fast garbage collection without a long wait. In
ACM Conference on Object-Oriented Programming Systems,
Languages, and Applications, pages 244–358, Anaheim, CA,
Oct. 2003.

[17] H.-J. Boehm. Space efficient conservative garbage collection.
In ACM SIGPLAN Conference on Programming Languages
Design and Implementation, pages 197–206, 1993.

[18] T. Brecht, E. Arjomandi, C. Li, and H. Pham. Controlling
garbage collection and heap growth to reduce the execution
time of Java applications. In ACM Conference on
Object-Oriented Programming Systems, Languages, and
Applications, pages 353–366, Tampa, FL, 2001.

[19] C. J. Cheney. A non-recursive list compacting algorithm.
Communications of the ACM, 13(11):677–8, Nov. 1970.

[20] J. Cohen and A. Nicolau. Comparison of compacting
algorithms for garbage collection. ACM Transactions on
Programming Languages and Systems, 5(4):532–553, Oct.
1983.

[21] D. L. Detlefs, A. Dosser, and B. Zorn. Memory allocation
costs in large C and C++ programs. Software Practice &
Experience, 24(6):527–542, June 1994.

[22] L. P. Deutsch and D. G. Bobrow. An efficient incremental
automatic garbage collector. Communications of the ACM,
19(9):522–526, September 1976.

[23] S. Dieckmann and U. Hölzle. A study of the allocation
behavior of the SPECjvm98 Java benchmarks. In
Proceedings of the European Conference on Object-Oriented
Programming, pages 92–115, June 1999.

[24] E. Dijkstra, L. Lamport, A. Martin, C. Scholten, and
E. Steffens. On-the-fly garbage collection: An exercise in
cooperation. Communications of the ACM, 21(11):966–975,
September 1978.

[25] A. Diwan, D. Tarditi, and J. E. B. Moss. Memory subsystem
performance of programs using copying garbage collection.
In Conference Record of the Twenty-First ACM Symposium

on Principles of Programming Languages, pages 1–14,
Portland, OR, Jan. 1994.

[26] L. Eeckhout, A. Georges, and K. D. Bosschere. How Java
programs interact with virtual machines at the
microarchitectural level. In ACM Conference on
Object-Oriented Programming Systems, Languages, and
Applications, pages 244–358, Anaheim, CA, Oct. 2003.

[27] R. Fitzgerald and D. Tarditi. The case for profile-directed
selection of garbage collectors. In ACM International
Symposium on Memory Management, pages 111–120,
Minneapolis, MN, Oct. 2000.

[28] M. W. Hicks, J. T. Moore, and S. Nettles. The measured cost
of copying garbage collection mechanisms. In ACM
International Conference on Functional Programming,
pages 292–305, 1997.

[29] A. L. Hosking and R. L. Hudson. Remembered sets can also
play cards, Oct. 1993. Position paper for OOPSLA ’93
Workshop on Memory Management and Garbage Collection.

[30] R. E. Jones and R. D. Lins. Garbage Collection: Algorithms
for Automatic Dynamic Memory Management. Wiley, July
1996.

[31] N. P. Jouppi. Improving direct-mapped cache performance
by the addition of a small fully-associative cache and
prefetch buffers. In Proceedings of the 17th International
Symposium on Computer Architecture, pages 364–373,
Seattle, WA, June 1990.

[32] J. Kim and Y. Hsu. Memory system behavior of Java
programs: Methodology and analysis. In ACM SIGMETRICS
Conference on Measurement & Modeling Computer Systems,
pages 264–274, Santa Clara, CA, June 2000.

[33] D. Lea. A memory allocator.
http://gee.cs.oswego.edu/dl/html/malloc.html, 1997.

[34] Y. Levanoni and E. Petrank. An on-the-fly reference counting
garbage collector for Java. In ACM Conference on
Object-Oriented Programming Systems, Languages, and
Applications, pages 367–380, Tampa, FL, Oct. 2001.

[35] H. Lieberman and C. E. Hewitt. A real time garbage
collector based on the lifetimes of objects. Communications
of the ACM, 26(6):419–429, 1983.

[36] M. Pettersson. Linux Intel/x86 performance counters, 2003.
http://user.it.uu.se/ mikpe/linux/perfctr/.

[37] Y. Shuf, M. J. Serran, M. Gupta, and J. P. Singh.
Characterizing the memory behavior of Java workloads: A
structured view and opportunities for optimizations. In ACM
SIGMETRICS Conference on Measurement & Modeling
Computer Systems, pages 194–205, Cambridge, MA, June
2001.

[38] Standard Performance Evaluation Corporation. SPECjvm98
Documentation, release 1.03 edition, March 1999.

[39] Standard Performance Evaluation Corporation.
SPECjbb2000 (Java Business Benchmark) Documentation,
release 1.01 edition, 2001.

[40] D. Stefanović, M. Hertz, S. M. Blackburn, K. McKinley, and
J. Moss. Older-first garbage collection in practice:
Evaluation in a Java virtual machine. In Memory System
Performance, pages 175–184, June 2002.

[41] D. Tarditi and A. Diwan. Measuring the cost of storage
management. Lisp and Symbolic Computation, 9(4), Dec.
1996.

[42] D. M. Ungar. Generation scavenging: A non-disruptive high
performance storage reclamation algorithm. In ACM
SIGSOFT/SIGPLAN Software Engineering Symposium on
Practical Software Development Environments, pages
157–167, April 1984.

[43] B. G. Zorn. The measured cost of conservative garbage
collection. Software Practice & Experience, 23(7):733–756,
1993.

36

