Paper Summary
Superoptimizer:

A Look at the Smallest Program
by Jay Patel

1. Overview

The paper purposes a tool called Superoptimizer that tries to find the shortest length assembly language
compiled version of a function (maybe also be refered to as a program). The tool tries to create a compiled
version of the function that is shorter in length than the compiler would produce. It takes advantage of
convoluted bit shifting features of some instructions to create smaller compiled functions. Typical these
functions are not readable by programmers and require some understanding to see what is exactly happening.

The input to Superoptimizer is an already compiled function and a subset of instructions supported by the
machine architecture (could be all instructions also). The Superoptimizer will try to generate the smallest
possible compiled function that is equivalent to the input function based on the instruction set. Basically,
Superoptimizer’s algorithm is to test all possible combinations in the instruction set and find the smallest
one that is equivalent to the input. It does this by generating sets of instructions of lenght 1, length 2, etc.
until a optimal solution is found.

There are two key routines in Superoptimizer. The first is quickly testing if the input function and the
generated function are equivalent. Superoptimizer utilizes the Probabilistic Test to quickly determine if
two functions are equivalent. The other key routine is generating a combination of instructions from the
subset to create a possible equivalent function. Clearly, there are some combinations of instructions that
can be quickly ruled out. Thus, Superoptimizer prunes the search space of the instruction set by ruling out
combinations that cannot be part of the optimal solution.

2. Detailed Example

Since compilers are used in general purpose compilation. And furthermore written by humans, it can be
difficult to utilize all features of an instruction set to create optimal compiled functions. Take the following
example, a function that returns the sign of a number X.

int function(int x) {
if (x>0) return 1;
else if(x < 0) return -1;
else return O;

}

Typical assembly code for this routine would look as follows.

le dO,0
branch L1
return 1
L1: ge d0,0
branch L2
return -1
L2: return O

Below is the optimized code that Superoptimizer was able to generate. The paper contains details on what
is happening on each instruction. But below, along with the instruction, the state of all relevant registers
and flag bits are shown for each instruction. Assume x is initially in the register d0.

Instruction | d0 >0 | d0O =0 | d0 < 0 | Comment

add d0,d0 c=0 c=0 c=1 set the carry flag based d0’s value

subx d1,d1 | d1=0 d1=0 dl=-1 | d1 - (dl - carry bit)

negx d0 c=1 c=0 c=1 negx only sets the carry bit if d0 was nonzero
addx d1,d1 | d1=1 d1=0 dl=-1 | d1 + d1 + carry bit

3. Probabilistic Test - Checking for program equivalence

In their first attempt, the authors tested for equivalence by representing the output as a boolean expression
based on the input. However, arithmetic operations have on the order 23!, conceivably because all possi-
ble values must be checked. Clearly, a boolean expression with this many terms is computationally and
space intensive. In their initial version, Superoptimizer could only handle functions with a maximum of 3
instructions. And it could test 40 programs per second for equivalence.

In contrast, this version of Superoptimizer uses a probablistic test. In contrast, this version of Superoptimizer
can handle functions with 12 instructions and can test 50,000 programs per second for equivalence. However,
strickly speaking the probabilistic test can lead to incorrect solutions (while the boolean verification cannot).
Though in the authors experience the probability of finding a false positive is very low. Furthermore, the
author still has to see a program that is incorrect based on the probabilistic test.

The probabilistic test at its core is very simple. The programmer selects a couple well crafted inputs for the
program being tested. For the example of the functin that returns the sign of a integer (above), the input
test cases could be a negative number, a positive number and 0. After Superoptimizer generates a possible
equivalent program, Superoptimizer first checks whether the two functions being compared have the same
output for the select few inputs. If the possible program passes these test cases, then the rest of the test
cases are tested. This reduces the number of programs that need to be tested against the entire input test
suite.

It is important to note that this methoding of testing for equivalence is not as conclusive as the boolean
test; however, the author notes he has not seen an incorrect test produced with the probabilistic test.

4. Pruning - reducing the search space

This part of the paper was unclear on some details that could have proven useful. As with the probabilistic
test, the idea behind pruning is quite straightforward. Since Superoptimizer is testing all possible combi-
nations, it is important to try and prune the search space as much as possible. What the author purposes
is that Superoptimizer should not test any programs for equivalence that include sequences that are known
not to be part of the optimal solution.

For example, the optimal equivalent program could not contain the pair of instructions AND x,y; MOV x.y.
Clearly, the result of the AND that is stored in Y, would be subsequently overwritten by moving the value
of x into y. Therefore, we could replace the two instructions with the single move instruction. Thus, any
time it is clear that the path being searched has a non-optimal subsequence, there is no need to check this
path. Since another path in recursive search will be searched without this path.

The author purposes using an N-dimensional bit vector structure for this task when searching for possible
equivalent programs. N being the length of the longest sequence(identified by the programmer) that is
known to be suboptimal. The author does not give a lot of detail past this about how the structure would
work. But I believe the author is purposing to keep a bit vector for each sequence that is known to be
suboptimal. Recall, during Superoptimizer execution, all sets of size 1 are tested, then all sets of size 2, etc.
Thus, whenever we create a new set from i-1 to i, the sequence with i instructions should be tested if it now
contains a suboptimal sequence. This is done by each instruction in the i*" sequence testing against one of
the dimensions of the N-dimensional bit vector. As the author states, a lookup of one means the sequence is
supoptimal and there is no need to go searching down this path anymore. Presumably a lookup of 1 means
that all instructions tested against the one dimension tested to be part of a suboptimal sequence.

It should also be noted, the author makes no claims about the registers involvedduring a suboptimal sequence
comparison. Using the example given above, while the sequence AND x,y;:MOV z,y is clearly suboptimal.
The sequence AND x,b;MOV z,y still could be legal. However, in the authors description, there is no mention
of checking instruction operands during a suboptimal check. Though, clearly in this case the operands do
matter.

5. Applications and Limitations

Finally, the author goes over the applications and limitations. Clearly in terms of limitations, Superoptimizer
is still doing an exponential search which causes it only to run currently on functions with 12 instructions
or less. Also, pointers present a problem because like addition and subtraction, they have a large set of
possible values. And the probabilistic test on them is inconclusive. Also, the instruction subset that the
Superoptimizer works with must be able to run on the native machine. Thus, for every new architecture to
run Superoptimizer a code change is required.

There are a couple benefits to Superoptimizer. First, being helping a compiler with peephole optimizations.
Once, Superoptimizer runs and finds optimized solutions to common tasks a compiler deals with. For
example, finding a constant offset for an array lookup. Or doing a comparison between two values. The
compiler can use the set of optimal generated programs by Superoptimizer to search for sequences in an
actual program and patch them in with the optimal solution. A second benefit is for assembly programmer
writers that wish to implement stdlib functions as optimally as possible to reduce the space they take up.
The author gives the example of optimizing the printf routine in the c stdlib. Finally, analyzing optimal
programs can help architecture designers understand what instructions are useful and which ones can be
discarded when designing possible instruction sets.

Lastly, though not mentioned in the paper, I feel that the Superoptimizer program structure lends itself
to parallelism. Each program that is tested for equivalence can be given off to a slave processor to do
the computation. Once it finds that the program it tested was suboptimal, the master process can give it
another program to test. This could help test a larger set of instruction sets and functions that are even
longer.

6. Conclusion

The ideas of probabilistic test and pruning described in this paper are useful tactics that can probably be
used in other areas of computer science. Also, if combined with a parallel architecture they could even be
faster. To the general reader of this paper, this is probably the most important thing to take away. Though,
for compiler designers, systems programmers and architecture designers, the subtle interplay between logical
and arithmetic operators in existing instruction sets is very compelling and could lead to other useful results.

