Retargeting JIT compilers
by using C-compiler generated executable code

M. Anton Ertl
TU Wien

anton@mips.complang.tuwien.ac.at

Abstract

JIT compilers produce fast code, whereas interpretersasgte
port between architectures. We propose to combine the advan
tages of these language implementation techniques as/fliwe
generate native code by concatenating and patching machdtee
fragments taken from interpreter-derived code (generbyed C
compiler); we completely eliminate the interpreter digpabver-
head and accesses to the interpreted code by patching jugep ta
addresses and other constants into the fragments. In ther pa
we present the basic idea, discuss some issues in more detil
present results from a proof-of-concept implementaticgoyig-
ing speedups of up to 1.87 over the fastest previous intenpre
based technique, and performance comparable to simplenati
code compilers. The effort required for retargeting ourlengen-
tation from the 386 to the PPC architecture was less thansaper
day.

1 Introduction

Different programming language implementation approagire-
vide different tradeoffs with respect to the following eri&:

e Portability (Retargetability)

e Execution Speed

e Compilation Speed
Existing language implementation techniques can satisfytovo
of these criteria, and have disadvantages in the third.vistaibde

compilers are hard to retarget; interpreters execute gloamhd
compilation-through-C results in slow compilation.

We propose to improve this situation with the following aggch:
we start with an interpreter written in C, modify it a littlthen
compile it to executable code, extract fragments from tbidec

and use them in a native-code compiler that generates code byg

concatenating and patching these fragments.

In this way the language implementor can start out with (a@hd,
necessary, fall back to) an implementation that satisfiesréh
quirements of portability and high compilation speed, atilll s
achieve execution speed comparable to a simple nativeamde
piler (as used in many JITs).

You can view this approach in two ways:

David Gregg
Trinity College, Dublin
David.Gregg@cs.tcd.ie

e You can see it as a way to speed up an interpreter by turn-
ing it into a JIT compiler. This is the way the technique is
presented in most of this paper.

e Oryou can see it as a way of reducing the retargeting effort
needed in a native-code compiler, with the additional bénefi
of having an interpreter to fall back to (e.g., if the langeiag
implementor does not have a machine with a specific archi-
tecture available for testing the port). It is important és r
member this viewpoint when comparing with other work for
generating compilers out of interpreters (Section 1.3).

We think that the main application area for this techniquerigm-

plementing new languages, and for speeding up existingibyes
that have been implemented as interpreters in the past Red,
Python, Ruby, PHP).

In this paper we first present an overview of our approach-(Sec
tion 2), then discuss some of the issues in more detail (@e8),
and present results for our proof-of-concept implemente¢Sec-
tion 4). Finally, in Section 5 we compare our work with rethte
work in-depth.

The main contribution of this paper is in using this approfarh

a native-code compiler, including fall-back strategies dases
where our methods are not applicable (e.g., dealing with- non
relocatable code, see Section 3.3), and the empiricaltsefsam

a proof-of-concept implementation (Section 4). We alscen¢

a new and more general method for finding places to patch in the
fragments (Section 3.5).

1.1 Why not write a compiler directly?

The native code resulting from the approach proposed inpiis
per is still quite a bit slower than the code from an optimigin
ative-code compiler such as gcc, and is comparable in speed
ode from fast and simple native-code compilers like bigfrand
iForth (see Section 4), so why would our approach be intieiggat
For the following reasons:

Portability With our approach, you start out with and can fall
back to an interpreter that can run on a new architecture with
out any porting effort (e.g., Gforth-0.6.2 runs out of thexbo
on IA64, AMD64, and ARM, three architectures that it has
not been tested on before release), whereas if you write just
a native-code compiler, it will not run on new architectures
without retargeting (and that typically requires someohe w
is familiar with the compiler internals).

Paper and BibTeX entry are available at http://www.complang.tuwien.ac.at/papers/. This paper was published in:
Parallel Architecture and Compilation Techniques (PACT’ 04), pages 41-50

If you implement an interpreter for portability and a native
code compiler for better speed on some platforms (the ap-
proach taken by, e.g., Ocaml), this will require more im-

code generation and guaranteed tail-call eliminationnotibe
implemented directly in C, whereas they can be implememnted i
an interpreter (even one written in C), and in our interprbtesed

plemenation and maintenance effort than our approach, and compiler.

there is also a higher potential for inconsistencies betwee
the two implementations.

Implementation effort We implemented our approach for the

386 architecture on top of the Gforth interpreter in two

person-weeks (resulting in about 200 lines of code specific
to the native-code compiler), and retargeted it to the PPC ar
chitecture in less than a person-day (resulting in 91 new or

changed lines compared to the 386 port). See Section 3.8 for

details.

The native-code compilers we compare with (bigforth,
iforth, and gcc) have certainly required more implementati
and retargeting effort. In particular, bigForth has onlg ha
two targets so far (68k and 386) and iForth only one (386),
in both cases without fallback to an interpreter; we believe
that this lack of portability is caused by the higher effbitt
retargeting would require. Retargeting gcc has been regort
to require several person-months of effort.

As a further data point, let us look at Ocaml, a system having
both an interpreter and a native-code compiler with reddyiv
many targets: The Ocaml-3.06 native-code compiler and its
run-time system have 8700 lines of target-independent code
in addition to the 6000 lines of code common to the bytecode

interpreter and the native-code compiler. In additionythe
have 1200-3100 lines of code for each target.

Compilation speed During compilation, our approach just

1.3 Why not use partial evaluation?

Producing compilers from interpreters has been propostmtehe
especially in the context of partial evaluation and progsaecial-

ization: Specialize an interpreter for a source progrard yam get

a compiled version of that program.

However, these proposals solve a different problem tharapur
proach; in particular, they do not attack the retargetisgés they
merely push it down into the specializer, or even further:

e Most partial evaluators output source code for a program-
ming language, so the resulting compiler would actually be
a source-to-source translator, with the correspondingpéom
lation speed disadvantage.

e Some systems, like Tempo [NHCL98] and DyC [GN®B0],
are able to produce native code directly. But these systems
have to be retargeted themselves: E.g., DyC is based on a
conventional compiler (Multiflow) and retargeting DyC is
at least as hard as any compiler. Tempo pioneered some of
the techniques we use for retargeting, but we introduce addi
tional techniques that make retargeting easier and ajybdica
to more architectures (see Section 3.5).

On the practical side, specializers are complex systenisatiea

copies existing code fragments and patches constants intocyrrently mostly available as research prototypes, wittbe
the appropriate places. It is hard to beat such an approach|ong-term maintenance guarantee that language implemsereo

on compilation speed, if you want the resulting code to be
faster. By contrast, gcc produces significantly better code

quire of their tools.

but does not compile fast enough to serve as a load-and-gon contrast, our approach is simple enough that it can begmpl

or JIT compiler.

The Ocaml-3.06 byte-code compiler takes 5.5s of CPU time

to compile a 4300-line file on an 800MHz Alpha 21264B

machine; the native-code compiler takes 40.2s (factorad®). F

comparison, our prototype Gforth compiler compiles 3500
lines in 86ms on a 1200MHz Athlon; this is slightly faster

than the Gforth threaded-code compiler.

1.2 Why not write a source-to-source trans-
lator?

A popular approach for language implementation is to coangil
source language into “source” code for another languagehamd
compiling that into machine code with an optimizing compilé

is most popular as the intermediate language, because Gé&spo
fewer restrictions and has better compilers than most dérer
guages.

The disadvantages of this approach compared to our appesach
the lower compilation speedunacceptable for an interactive or

JIT compilet), and that some language features (e.g., run-time

10ne reader praised the compilation speed of MSVC compared
to gcc. However, even if MSVC was fast enough, that would be of else:

little use to someone porting a system to, say, Linux-PPQ-eMo
over, if MSVC is fast enough, why is the .NET JIT compiler not
implemented as a translator-through-C?

mented and maintained with relatively small effort (congahto
the rest of the language implementation) by the languagéeimp
mentors themselves, without creating a dependence on e de
oper of a partial evaluator or an interpreter retargetibgaliy.

2 Basicldea

This section demonstrates our approach on a running exaivgle
start with a plain interpreter, then add several previopsbposed
optimizations, and finally (Section 2.6) perform a new stegt t
results in the complete elimination of interpreted code.

2.1 Running Example

Consider the Java expressiafily+1000:z. The corresponding
JVM code produced by thgavac compiler is:

iload_1 ;X
ifeq else N
iload_2 N
sipush 1000 ; 1000
iadd ; +
goto cont HE
iload_3 H4

cont:

Our running example will be the following piece of that JVMieo

Threaded Code Executable code (Interpreter)

mov O(IP),tnp ; tnp=IP[O]
mov TGS, (SP) ; SP[0]=TCS
add $-4, SP ; --SP
sipush add $8,1P oI P+=2
1000 mov tnp, TGOS ; TOS=tnp
iadd jmp *-4(1P) ; goto *IP[-1]
goto
cont
mov 4(SP),tnp ; tnp=SP[1]
add $4, SP ; SP++
add $4,1P oI P++
add tnp, TOS ; TOS+=tnp
jmp *-4(1P) ; goto *IP[-1]
mov O(IP),IP ; IP=IP[O]
add $4,1P ;I P+
jmp *-4(1P) ; goto *IP[-1]

Figure 1. Threaded code and the corresponding parts of the
interpreter

sipush 1000 ; 1000
iadd ; +
goto cont ;

2.2 Threaded Code

The fastest interpreters use threaded code [Bel73] to nErim
dispatch overhead. Threaded code represents each VMadnstru
tion as address of the routine that implements the insbmgcthe
code for dispatching the next instruction consists of fielghhe
VM instruction, jumping to the fetched address, and incneting

the instruction pointer. This technique cannot be impleeein
ANSI C, but it can be implemented in GNU C using the labels-as-
values extensioR.

Figure 1 shows threaded code for our example, and the rauine
the interpreter that are called to execute the VM instrusti(as
386 assembly code, with VM register names instead of re&@-+eg
ter names; note th&esp is used by GCC for its own purposes, so
our SP is in some other register and we cannot usepineh and
pop instructions).

In Fig. 1 the machine code enters each routine with the icttnu
pointer (IP) pointing to the memory location just after thi1\h-
struction (e.g., in our example IP points to 1000 whensthgush
code is entered); each routine updates IP to point just teemext
VM instruction, and then jumps to the address pointed to ley th
VM instruction. The stack grows down. The top-of-stack e
(TOS) is kept in a register. The stack pointer (SP) pointshena
the top-of-stack element would be if it were in memory.

2.3 Static Superinstructions

One way to improve performance is to provide VM superinstruc
tions that have the effect of a sequence of simple VM insivast
and to replace sequences of simple VM instructions with @ppr
priate superinstructions [Pro95, HATvdW99, EGKPO02]. Fega

2With a little bit of conditional compilation, it is easy to ite
an interpreter such that it uses threaded code with gcc, sesl u
some ANSI C-compliant technique with other compilers.

Threaded Code Executable code (Interpreter)

nov O(IP),tnp ; tnp=IP[O]
/add $8, 1P DI Pr=2
: - dd tnp, TS ; TOS+=tnp
sipush_iadd a *. *1 Bl
1000 jmp 4(1P) ; goto *IP[-1]
goto
cont \rmv o(IP),IP | P=I P[0]
add $4,1P ;o P+
jmp *-4(1P) ; goto *IP[-1]

Figure 2. Threaded code with static superinstructions

shows the result of using a superinstructidpush_iadd instead
of the sequence afipush followed byiadd.

In this case the code for the superinstruction is shorten the

code for each of the simple VM instructions, because thergupe
struction does not change the stack depth (no SP updatesaeges
and only accesses TOS (no stack memory access necessary).

2.4 Dynamic Superinstructions and Replica-
tion

The interpreter cannot provide a static superinstruct@refery
possible sequence of simple instructions; in fact, prattionsid-
erations (in particular, the space required for compilimg inter-
preter) limit the number of static superinstructions toesal’hun-
dred. Another way to create superinstructions is by simply-c
catenating the executable code of the VM instructions, aadhg
the dispatch code between the VM instructions away (see3Fig.
[PROS].

These dynamic superinstructions are not as well optimized a
static superinstructions, but they reduce the dispatcha® ref-
fectively, and dispatches are expensive [EGO03].

Dynamic superinstructions can be reused if the same segquenc
curs several times [PR98], but having a separate instanteeof
superinstruction for each occurence of a sequence in teadbd
code (replication) is both simpler to implement and impsotiee
branch prediction accuracy of the remaining dispatche @G

2.5 Dowe need IP?

With dynamic superinstructions and replication, the dyiailty
generated code is already quite close to what a simple redige
compiler would produce. In particular, this code needs Vit di
patches only when a VM branch is taken. However, a lot of the
remaining code deals with IP, i.e., the pointer to threadtbc

The threaded code and IP are still needed for the following pu
poses:

¢ To find the native code to execute after a dispatch (i.e.r afte
a taken VM branch).

e To access immediate arguments of VM instructions (in our
example, 1000 and cont).

How can we eliminate these uses, and thus the threaded cdde an
IP?

Threaded Code Executable code (dynamic) Executable code (Interpreter)

sipush_iadd
1000
90“: —nov O(IP),IP : IP=IP[O] jmp *-4(1P) ; goto *IP[-1]
con .
add $4, 1P i IPe mov 0(1P),IP ; IP=IP[O]
jmp =-4(1P) i goto *IP[-1] add $4,1P ; IP++
jmp *-4(1P) ; goto *IP[-1]

Figure 3. Dynamic superinstructions

Executable code (dynamic) Executable code (Fragments)

JaddN $1000 O8] «— —{addN$0x5555 T8
j mp cont _code —
j mp $0x55555555

Figure 4. Generating code by concatenating and patching frgments

2.6 Fragments and Patching start_si push_i add_n:

TOS += 0x5555;
The approach we propose here is to have code fragments that co apng sij pushxi add’ n:

tain immediate arguments instead of references througiviien goto *next;

copying the code fragment during the dynamic code generatio L

we patch the desired immediate argument into the fragment in nencpy(dest, &&start_si push_n,

place of the original immediate argument. And instead of us- (&8end_si push_n) -(_&&st ar t__si push_n));
ing threaded code dispatch for VM branches, we just usetdirec
branches; the target addresses are patched just like othezdi- Figure 5. The GNU C code for a fragment, and code for copy-
ate arguments. Figure 4 shows how this approach works in our ing the fragment to dest

example.

How do we get the fragments and the patch information? A frag- The benefits of this approach over writing a JIT compiler ie th
ment is basically the executable code for a VM instructibtihé usual way are that it needs very little platform-specificegoand

VM instruction has no inline argument, it is basically thensa if even that is not available, we can fall back to an interipeet
code as in the dynamic superinstruction case. The patch-info jmplementation, and thus achieve full portability.

mation is found by comparing two fragments for VM instruaso

that differ only in constants used in the VM instruction. g8 Another way of looking at this is: if you implement a language

discussed in more detail in Section 3.5. through an (efficient) interpreter, you do not need to redat af
work if you want to improve performance with a simple compile
you can just extend the work you did on the interpreter.

2.7 Benefits 3 Details
The benefit of this approach over the fastest previous irgeep This section discusses a number of specific issues that wesidn
based techniques is faster code, for three reasons: in Section 2. Some of the techniques presented in this seati®

not original to this paper and we present them for complet&ne

o All accesses to the interpreted code are eliminated, in par- R&ad Section S for a detailed account.
ticular accesses to immediate arguments and accesses to o
threaded code pointers for control flow. 3.1 Finding Fragments

e Our approach uses direct jumps instead of performing con-
trol flow through threaded code dispatch (load and indirect
jump). For conditional VM branches, this results in a direct
conditional branch instead of a conditional branch folldwe
by a dispatch.

How do we find the start and the end of each fragment? We put
labels before and after each fragment, and we use GNU C’stabe
as-values extension to convert these labels into the sidread
addresses of the machine code for the fragfhéaNSI C only

e The VM instruction pointer is eliminated, freeing a registe 3Recent GCC versions need theno-reorder-blocks flag
and eliminating all the instructions for updating the VM in- in order to guarantee that the order of labels and code imihes
struction pointer. is preserved in the native code.

allows using labels igoto statements); eventually these labels are
used in anemcpy () call. Figure 5 shows the code for a fragment,
and how code for copying the fragment might look (in realktsg t
copying code will be more general, though).

3.2 Context

How do we ensure that the code fragments that we use fit tagethe
In particular, how do we ensure that the register allocaitsathe
same between fragments?

We put all the fragments in the same C function, and we put an
indirect jump after each fragment (see Fig. 5). This indijemp

can jump to any fragment; this forces the compiler to make sur
that fragments can follow each other in any order.

For fragments containing patchable direct jumps, we iihytiet

the direct jump branch to an indirect jump, in order to ensure
the correct register allocation (the actual target is get,lauring
patching).

3.3 Non-Relocatable Code

Not all executable code can be copied easily to anotheritotat
E.g., absolute references within the fragment (e.g., dimmdil
branches on the MIPS architecture) or PC-relative refeeno
code outside the fragment (e.g., calls on 386 or SPARC) requi
more complex relocation capabilities than just copying dbde.
How do we deal with such fragments?

We can try to use the same techniques for relocating this ttade
we use for patching fragments with embedded immediate argu-
ments (see Section 3.5).

However, if all else fails, we have to classify the fragmenhan-
relocatable, and we have to find a way to still use it.

Our approach in this case is to call the fragment in its ogbin
location (in the executable code of the C function contajrat

the fragments), using the indirect jump at the end of thenfrexgt

to return to our dynamically generated code. To achieve s
load the variablewext with the address of the code after the non-
relocatable fragment, and then jump to the non-relocatfxbe
ment* (see Fig. 6). The indirect jump at the end of the fragment
will then jump back to the dynamic code.

3.4 Relocatability information

How do we find out if a fragment is non-relocatable? We compare
two fragments produced from the same C source code.

We have tried several variants of implementing this idea,ttel
one that we have finally settled on is to have two instancekleof t
function containing the fragments. The benefits over havilhg
fragment instances in the same function are: 1) no spuridus d
ferences from different stack offsets of equivalent fragtdecal

40n many architectures we will have to use an indi-
rect jump to perform this (long) jump; GCC-3.2 and later

rearrange indirect branches so we cannot copy them (even

with -fno-reorder-blocks, see http://gcc.gnu.org/bugzilla/
showbug.cgi?id=15242). However, the gcc maintainers are work-
ing this problem, and hopefully it will be fixed in GCC-3.5.

variables; 2) we can use more unique fragments (the number of
fragments per function is limited by gcc’s memory usage).

One of these functions contains additional padding betwhen
fragments (created withsm(".skip 16");), to make relative
inter-fragment jumps different.

3.5 Patch information

How do we know where to patch the fragments? For each frag-
ment, we produce two instances that differ only in the embddd
constants; then we compare their machine code to produ@nthe
try for the fragment in the patch table (see Fig. 7).

When comparing the fragments, we have to check for all thesway
in which the fragment-producing compiler encodes the @omist
For each architecture, there are only a few such ways. Exg., o
the 386 architecture constants are encoded as sign-egtéruge
values or as 4-byte values, either PC-relative (for bramchjamp
targets) or absolute (for other immediate arguments); erPiw-
erPC architecture constants are either encoded as 16-P@-bit
PC-relative addresses, or as absolute values that arénsplitvo
16-bit chunks or (if representable) are stored in one sidargled
16-bit field.

By wisely choosing the constants that we put into the fragsen
we can ensure that we recognize all the places that contain th
constants, that the encodings we want to have are used, @wieh
recognize the encodings and offsets correctly, and whioktents

in the fragments correspond to which logical argument.

In particular, in our prototype we use word-size argumentsefe

the most significant bits are either 10 or 01) for non-braadioe
ensure that we get full-length encodings; the two constantdhe
same argument of the two instances of the same fragmentg-are b
wise complements of each other to ensure that they are rizeagn
as being different. And the two 16-bit halves are differenen-
sure that we recognize which half is which.

In addition to having fragments for word-size constantscoald
provide alternative fragments for smaller constants (ewvithin
the signed 8-bit range for the 386, and the signed 16-bitadog
PPC), to allow to use better code; our prototype implemamntat
does not do this yet.

For patchable branches, our current prototype uses just sam
gets within the same function (different targets for didfietr in-
stances), with the targets being not-too-close to avoithgeshort
operand encodings.

On some platforms, large constants (e.g., 64-bit constamthe
Alpha architecture) are not embedded in the code, but retece
through a constant table. In these cases, the varying bitsein
machine code have no obvious relation to the constant, and we
will have to find another way to deal with such constants. One
way is to use a constant table ourselves, which is accessmeyth

a constant table pointer and offsets; the offsets are smailigh to

be created without the constant table. This is not yet impleed

in our prototype implementation.

If we are not able to determine the encoding and position ef th
constants (e.g., if the compiler used an encoding we did xiot e
pect), or if a fragment containing an inline constant turasto be

Executable code (dynamic)

nmov $cont 1, next
j mp nonrel ocat abl el
cont 1:

D—

Executable code (Fragments)

/ nonr el ocat abl e1l:

nmp *next

Figure 6. Calling a non-relocatable fragment

Executable code (Fragments)

Fragment&patch table

sipush_iadd_n:

' 10 32 54 76---___
T
$0x 765432101 TCS)| ,Compare---

ef cd ab 89-"

'SOX89abcdef , TCS)

fragment start

fragment length: 6 bytes
number of consts: 1
const 1 relative: no
const 1 offset: 2 bytes

goto:

Figure 7. Generating patch information by comparing fragments

non-relocatable, we have to give up and fall back on thepnéter.
However, this has not happened in our prototype implemientat

3.6 Determining the encodings

We hardcoded the information about the various constaracenc
ings used in the architecture into our prototype. In a prtidac
version, we will abstract this information out into arcloitgre-
specific include files; we expect each of these files to cordain
few dozen lines of code.

However, the encodings can also be determined automatimall
comparing fragments: For this approach, we need more ics$an
of the same fragments with different constants. E.g., fohdait
in the constant, we might have an additional fragment whose c
stant differs from the constant of the previous fragmeny onthat
bit, allowing to determine which bit in the constant cormasgs to
which bit in the fragment.

This approach would be able to deal with arbitrary splittifighe
constant into parts (e.g., 16-16 for PPC, 19-13 for SPARE), a
well as nonsequential distribution of the bits of the consta.g.,
in HPPA branches). Its limitations are that it can only ratog

encoding schemes we expect (such as absolute and PCeklativ

;acall to foo
add $-4, SP ; SP- -
mov| $retaddr, (SP) ; SP[0] =&&r et addr
jmp foo ;goto foo
ret addr:
;and a return
nov (SP), %eax ; t Mp=SP[0]
add $4, SP : SP++
jmp *Ogax ;goto *tnp

Figure 8. A simple call (no parameter or frame handling) to
foo and a simple return

3.7 Calls and Returns

Of course, we can only use features in the generated code for
which we can generate fragments from C source code. A particu
larly nasty problem in this respect are VM-level calls anmimes.

One might think that we can just use fragments generated @om
code for a C call or @eturn, but this does not work, because this
does not call or return to code in the context of the functia w
are working in; instead, the calling sequence typicallynges the
C-stack pointer (invalidating all references through thainter),
and the return sequence also tries to restore registers.

There is no other way to get the C compiler to produce call and

and the scheme has to be simple enough that changing one bit inreturn instructions in a portable way, so we have to emulalis ¢

the constant changes one bit in the fragment.

One problem with this idea is that it is probably easier totevri
a dozen or so encoding descriptions for the architectureareve
interested in than to implement this idea. While completefmiree
independence is a worthwhile goal, the encoding descrijigiaot
the only thing missing for this goal; we also have to providde
for ensuring instruction cache consistency (typicallywa fi@es of
code), and we know of no automatic way to generate that code.

and returns using ordinary jumps: the calling code provithes
return address as literal and saves it somewhere, then jumtips
target; the return code just performs an indirect jugpto *. ..
in GNU C) to the return address (see Fig. 8).

Of course, this approach does not provide the best perfa®an
the calling code is larger than otherwise, and the reture ctms
not utilize the branch prediction usually provided by a gssor's
return stack.

If we want performance to be better, we can provide machine-
specific call and return fragments, and fall back to the gersar-
proach for machines without special support.

3.8 Implementation Effort

Implementing the techniques described in this paper intG -
quired detailed knowledge of the Gforth VM, and the threaded
code generator, and of the techniques themselves. The &hang
needed were mostly local to the part of Gforth that is alsolired
when implementing dynamic superinstructions.

In addition, we had to change a few other things in the codergen
ator where (originally) data was mixed with the threadedecanad
accessed through the return address of Forth functions. ¥ m
ified such code so that it explicitly takes a pointer to theadet a
literal; this works both for the native-code and the threhdede
compiler. While this particular issue is probably relatjv&forth-
specific, we expect that other language implementatiomstelge
issues where threaded-code addresses may be needed ifstead
native-code addresses or vice versa (e.g., exceptionstabkhe
JVM).

Overall, implementing this approach required about twesper
weeks, and resulted 200 lines of code specific to the natide-c
compiler, plus small changes in other code generation parts
eliminate threaded/native code-address mixups.

Retargeting the prototype to PowerPC required a knowledge o
the part of the Gforth system that deals with patching (very
localized knowledge), and a knowledge of the way that caortsta
and branch targets are represented in the 386 and PPC etatdte
This required less than a person-day of work and resulted.in 9
new or changed lines compared to the 386 port.

4 Experimental Results

We implemented the approach presented above in Gforth, a
product-quality Forth syste?n for the 386 and the PowerPC ar-
chitecture.

We ran a number of benchmarks on this sy:
Gforth variants and other Forth systems, and, for some bench
marks, GCC:

gforth-plain Gforth without static or dynamic superinstructions
(gforth-fast --no-dynamic --ss-number=0). This is
an efficient classic threaded-code interpreter.

gforth-super Gforth with static and dynamic superinstructions
and replication gforth-fast). 13 static superinstructions
are used.

gforth-native Our prototype implementation. It uses the same 13
static superinstructions as gforth-super.

bigforth (version 2.0.11). A fast and simple native-code compiler
(uses peephole optimization).

iforth (version 1.12.1125). Another simple native-code compiler

5You may be wondering why we have not used this approach
with a JVM implementation. The reason is that we currently do
not have a useful JVM interpreter to which we could apply this
approach (the Cacao interpreter that we used in earlier wagk
very limited in the set of benchmarks it could run).

Program | Version | Lines | Description

Cross 0.6.9 3793 | Forth cross-compiler
tscp 0.4 1625 | chess

brainless | 0.0.2 3519 | chess

vmgen 0.6.9 2641 | interpreter generator
bench-gc | 1.1 1150 | garbage collector
CDl6sim | 1.1 937 | CPU emulator
pentomino 516 | puzzle solver

sieve 23 | prime counting

bubble 74 | bubble sort

matrix 55 | integer matrix multiply
fib 10 | double-recursive function
mm-rtcg 109 | run-time code generation
compile 3519 | brainless compile-only

Figure 9. Benchmark programs used

gcc (version 2.95.1 on the Athlon, 3.3.2 on the PPC). This uses
hand-written C code for the benchmarks, compiled with
-03. The compile time is not included in the timings for the
gcc results (in contrast to the Forth systems).

Figure 9 shows the benchmarks we used for our experiments.
We used the following platforms: a 1200MHz Athlon (Thun-
derbird, VIA KT133 chipset, 384MB PC100 SDRAM, Linux-
2.4.18, glibc-2.1.3) and a 450MHz PPC7400 (PowerMac3.1 sys
tem, 256MB RAM, Linux-2.4.22, glibc-2.3.2).

Figure 10 and 18 show how the various systems perform com-
pared to gforth-native. Not all benchmarks run on all systéim
particular, we only have C code for sieve, bubble, matrix, fin),

so we show different sets of bars for different benchmarks.

On the Athlon the speedup of gforth-native over gforthiples
between 1.4 (mm-rtcg) and 5.2 (matrix), median 2.7. On the
PPC7400 the speedup is between 1.43 (cross) and 2.42 (fib), me
dian 1.94.

The speedup on the Athlon over gforth-super is between @6 (
trix) and 1.49 (tscp), median 1.32; on the PPC7400 the speisdu

stem, on a number ofbetween 1.29 (cross) and 1.87 (fib), median 1.52. These gpsed

may appear relatively small compared to some of the othexdspe
differences shown here, but if we put it in relation to thatiekly
small effort required to achieve it, we find that this is a venorth-
while improvement.

The differences between the machines can be explained folthe
lowing way: Branch mispredictions are more expensive on the
Athlon, therefore gforth-plain loses more compared to tifor
super and gforth-native on this machine. The remaining-indi
rect branches in gforth-super are more expensive on the #JC7
(which does not predict indirect branches) than on the Athlo
(which predicts nearly all of them correctly), so replacihgse
indirect branches by direct branches helps the PPC7400. more

The speedup of bigForth over gforth-native is rather inisiast,
between 0.12 (CD16sim) and 2.09 (fib), median 1.19. Themdre
slowdown of bigForth on CD16sim is caused by placing codseclo
to frequently written data, resulting in cache consistem@rhead.

6We did not use pentomino on the PPC7400, because this
benchmark requires conditional branches over more therB32K
and we have not implemented this on the PPC port yet.

speedup mgforth-plain Mgforth-super Mgforth-native

3.07 bigforth Miforth Mgcc
2.01
1.4+
1.01
1/1.4 1
1/2.0 1
1/3.01
1/5.0 1
1/8.0 1
Cross brainless bench-gc pentomino bubble fib compile

tscp vmgen CD16sim sieve matrix mm-rtcg

Figure 10. Speedup of various systems relative to gforth-rize on a 12200MHz Athlon

speedup mgforth-plain Mgforth-super Migforth-native ' gcc
8.0

5.01

3.0

2.0

1.41

1.01
1/1.41
1/2.01
Cross brainless bench-gc siev matrix mme-rtcg
fib

tscp vmgen CD16sim bubble

Figure 11. Speedup of various systems relative to gforth-riwe on a 450MHz PPC7400

The speedup of iForth over gforth-native is between 0.8&fts and the compile time is not included in the gcc timings), tut i

and 1.41 (fib), median 0.93. We conclude that gforth-natsve i provides a kind of upper bound for the speedup that we cdn stil

competetive in performance with simple hand-written reattede achieve. There is still quite a bit of work left to do, espégian

compilers. the PPC7400. We explain the slowdown of gforth-native ower g
at least partially with the stack-in-memory accesses; we kaen

The speedup of gcc-2.95.1 on the Athlon over gforth-natsre i a good speedup (especially on the PPC 7400) from eliminating

between 1.50 (sieve) and 3.03 (matrix), median 2.44. On the part of this overhead with static stack caching [EG04].

PPC7400 the speedup of gcc-3.3.2 over gforth-native isdmrw

1.84 (fib) and 9.09 (matrix), median 4.90. This is not a faimeo Concerning compilation speed, tbempilebenchmark shows that

parison (gcc is not an interactive system, it compiles mimhes, gforth-native compiles faster than gforth-plain or gfestiper; the

reason is that a good part of the compile time is spent in e fr
end, which is written in Forth and gets a speedup from thefast
execution in gforth-native. The small additional compiled in
the back-end of the compiler more than pays for itself. Tloethf
native compiler is also faster than bigForths compiler.

5 Related Work

Rossi and Sivalingam [RS96] proposed dynamically genggati
native code by copying fragments from an interpreter.

Piumarta and Riccardi [PR98] expanded on that and implesdent
this idea in a full-scale interpreter. The main differeneéween
their work and ours is that their generated code still usesrter-
preted code for immediate arguments and for control flow.ré&he
fore they do not patch literals and branch targets into thivena
code.

They deal with non-relocatable code by falling back to oadin
threaded code, which is not possible in our IP-less appr{sed
Section 3.3 for our solution). They rely on programmer-digop
tables for recognizing relocatability, in contrast to outamatic
way (Section 3.4).

Other recent work [EG03] looked at various ways to reduce the
dispatch branch cost in interpreters. The present worlstigates
eliminating interpreter dispatch altogether and evenghielated

to it, resulting in even more performance.

Tempo [NHCL98] is a run-time specializer that works by produ

and benchmarks).

Qemu is a 386 emulator using dynamic translation. It ackieve
portability by compiling pieces of C code and concatenatimg
resulting machine code fragments. For filling in constaitisses
linker relocation information, like Tempo.

Performing compilation based on an interpreter has begyopeul
before, in particular by specializing (partially evalunaf) an inter-
preter for a specific application program [JGS93, GNIB]. With

the exception of Tempo, those works ignore retargeting eadd
it to the back-end of the specializer or (for source-to-sewspe-
cializers) to a later compiler run. In contrast, the mairutof the
present work is on creating an easily retargetable back-&ud
despite superficial similarities, we are attacking a déferprob-
lem than the partial evaluation community.

Dynamic optimizers like DynamoRIO have a hard time with in-
terpreters; however, calling the API of an enhanced dynapiic
mizer in certain places in the interpreter, these problears e
eliminated and even a good amount of speedup can be gained
[SBB*03]. While these optimizations can achieve some of the
benefits of our approach, they do not achieve them all (ehg., t
instruction pointer is not eliminated). Moreover, thes¢iroza-
tions are limited to platforms that have a dynamic optimitret
supports this API (currently only 386). It is also not cleawh
the effort for enhancing the dynamic optimizer and the jteter
compares to the effort required for our approach.

Other approaches of generating compiler back-ends have bee
proposed; in particulakycobDE [Eng96] and GNU Lightning pro-

ing C code for fragments and concatenating and patching them vide fast code generation interfaces for dynamic code gtioer

at run-time. The difference from the present work is that flem
specializes specific functions for specific inputs, whergasm-
plement a general compiler; in particular, Tempo does net ha
deal with arbitrary sequences of fragments (see Sectign 3.2

Another difference is that we have a fall-back strategy fealithg
with non-relocatable code (Section 3.3), while Tempo haseno
making it harder to retarget Tempo (relocation has to worélin
cases).

Finally, Tempo uses the meta-information from the objeet fid
produce the patch information, whereas we compare twoeaativ

Unfortunately, they suffer from the usual problems of natiode
compilers: only a few platforms are supported, with no Btk
option for other platforms. Moreover, you have to use specifi
primitives in code generation, whereas our approach altiefis-
ing your own primitives in C, letting the C compiler optimitteat,
and using these primitives for interpretation or compilati

Collberg [Col02] proposed and implemented ADT, a systerh tha
creates machine descriptions for a code generator autatigti

by analysing the assembly code produced by a C compiler fer va
ious test programs. Differences from the approach propased
Section 3.6 are that the code generators produced by ADT work

code fragments with different embedded constants (see Sec-through an assembler and linker (less compilation speed), a

tion 3.5). One disadvantage of Tempo's approach is that it is
hard to port to many 64-bit systems, where large constawslil-
dresses are not stored in the code, but in separate coretdes.t
Another disadvantage is that it always uses the full-sizmdimg

of constants, and does not allow for more efficient encodings

Vitale and Abdelrahman [VA04] explore turning an intergranto

a JIT compiler by concatenating and patching (specialjzimg-
chine code derived from an interpreter, just like we do. Tlaém
difference from our work is that they use somewhat diffetenh-
niques for deriving the fragments and patch informatiomthe
do, and their methods require postprocessing the asserably ¢
produced by GCC. One interesting difference is that theyatem
rialize the instruction pointer in places where it is neaegswvhich
may also be a useful idea for our approach (there were a faepla
in Gforth that we changed so that we would not need an insbruct
pointer). They implemented their approach for Tcl on SPARE],
observed a lot of I-cache misses, in contrast to us (thabisginly
mainly due to the differences between the Tcl and the Fortts VM

that ADT learns a lot about the actual instructions and teggs
whereas our approach treats the fragments as mostly opadue a
discovers only the patch information.

Debaere and Van Campenhout [DV90] have proposed instnictio
path coprocessing as a way to speed up interpreters: The-copr
cessor would interpret the program and generate a sequénce o
instructions for the main processor. These instructionslgvonly
perform data computations, whereas the control flow of therin
preted program and the interpreter is performed and eli@ihiay

the coprocessor, eliminating most of the interpreter cvadh Our
approach also eliminates most of the interpreter overhieatdit
keeps the control flow of the interpreted program; and of ssur
our approach does not require special hardware.

6 Conclusion

We present an approach that fills the gap between the patyabil
of interpreters and the execution speed of native-code iterap
We start out with code fragments extracted from a variantrof a
interpreter, concatenating and patching them into naibe dor
the program we want to compile. This approach completetyieli
nates all references to the interpreted code and the VMuictidn
pointer used for referencing the interpreted code.

[JGS93]
There are a number of technical problems to solve for impigme
ing this approach, and we present solutions for them: Thg fra
ments and their patch information have to be determined,ave h [NHCLOS]

to determine relocatability, and deal with non-relocdtghbi

This approach results in execution speed comparable to sim-
ple native-code compilers, in speedups of up to 5.2 over ta fas
threaded-code interpreter, and up to 1.87 over an intenpvath
dynamic superinstructions and replication (the fastdstjmetive

technique). The cost of implementing this approach in astiexj [PR98]
interpreter was about two person-weeks for the first targ@s),
and a day for the second target (PPC).
Acknowledgements [Pro95]
The referees of PLDI'03 and PACT’04 provided helpful comtsen
on earlier drafts of this paper. Ulrich Neumerkel and Petst&t
provided insight into compiler construction with partialagua- [RS96]
tion.
7 References
[Bel73] James R. Bell. Threaded cod&ommunications of [SBB+03]
the ACM 16(6):370-372, 1973.
[Col02] Christian S. Collberg. Automatic derivation of
compiler machine descriptions.ACM Transac-
tions on Programming Languages and Systems
24(4):369-408, July 2002. [VAO4]
[DVaQ] Eddy H. Debaere and Jan M. Van Campenhout.
Interpretation and Instruction Path Coprocessing
The MIT Press, 1990.
[EGO03] M. Anton Ertl and David Gregg. Optimizing indi-
rect branch prediction accuracy in virtual machine
interpreters. IIBIGPLAN '03 Conference on Pro-
gramming Language Design and Implementation
2003.
[EG04] M. Anton Ertl and David Gregg. Combining stack
caching with dynamic superinstructions. IMME
'04 Proceedingspages 7-14, 2004.
[EGKPO02] M. Anton Ertl, David Gregg, Andreas Krall, and
Bernd Paysanvmgen — a generator of efficient
virtual machine interpreters.Software—Practice
and Experience32(3):265-294, 2002.
[Eng96] Dawson R. Engler.vCODE: A retargetable, ex-
tensible, very fast dynamic code generation sys-
tem. InSIGPLAN '96 Conference on Programming
Language Design and Implementatigages 160—
170, 1996.
[GMPT00] Brian Grant, Markus Mock, Matthai Philipose,

Craig Chambers, and Susan J. Eggers. DyC: An

[HATVAW99]

expressive annotation-directed dynamic compiler
for C. Theoretical Computer Scienc48(1—
2):147-199, 2000.

Jan Hoogerbrugge, Lex Augusteijn, Jeroen Trum,
and Rik van de Wiel. A code compres-
sion system based on pipelined interpreters.
Software—Practice and Experien@9(11):1005—
1023, September 1999.

Neil D. Jones, Carsten K. Gomard, and Peter Ses-
toft. Partial Evaluation and Automatic Program
Generation Prentice Hall, 1993.

Francois Noél, Luke Hornof, Charles Consel, and
Julia L. Lawall. Automatic, template-based run-
time specialization: Implementation and experi-
mantal study. INEEE International Conference on
Computer Languages (ICCL'98pages 123-142,
1998.

lan Piumarta and Fabio Riccardi. Optimizing di-
rect threaded code by selective inlining. $hG-
PLAN '98 Conference on Programming Language
Design and Implementatippages 291-300, 1998.

Todd A. Proebsting. Optimizing an ANSI C in-
terpreter with superoperators. Principles of Pro-
gramming Languages (POPL '95)ages 322—-332,
1995.

Markku Rossi and Kengatharan Sivalingam. A
survey of instruction dispatch techniques for byte-
code interpreters. Technical Report TKO-C79,
Faculty of Information Technology, Helsinki Uni-
versity of Technology, May 1996.

Gregory T. Sullivan, Derek L. Bruening, Iris

Baron, Timothy Garnett, and Saman Amaras-
inghe. Dynamic native optimization of interpreters.
In Interpreters, Virtual Machines and Emulators

(IVME '03), pages 50-57, 2003.

Benjamin Vitale and Tarek S. Abdelrahman. Cate-
nation and specialization for Tcl virtual machine
performance. IlVME '04 Proceedingspages 42—
50, 2004.

