
Retargeting JIT compilers
by using C-compiler generated executable code

M. Anton Ertl
TU Wien

anton@mips.complang.tuwien.ac.at

David Gregg
Trinity College, Dublin

David.Gregg@cs.tcd.ie

Abstract

JIT compilers produce fast code, whereas interpreters are easy to
port between architectures. We propose to combine the advan-
tages of these language implementation techniques as follows: we
generate native code by concatenating and patching machinecode
fragments taken from interpreter-derived code (generatedby a C
compiler); we completely eliminate the interpreter dispatch over-
head and accesses to the interpreted code by patching jump target
addresses and other constants into the fragments. In this paper
we present the basic idea, discuss some issues in more detail, and
present results from a proof-of-concept implementation, provid-
ing speedups of up to 1.87 over the fastest previous interpreter-
based technique, and performance comparable to simple native-
code compilers. The effort required for retargeting our implemen-
tation from the 386 to the PPC architecture was less than a person-
day.

1 Introduction

Different programming language implementation approaches pro-
vide different tradeoffs with respect to the following criteria:

• Portability (Retargetability)

• Execution Speed

• Compilation Speed

Existing language implementation techniques can satisfy only two
of these criteria, and have disadvantages in the third: Native-code
compilers are hard to retarget; interpreters execute slowly; and
compilation-through-C results in slow compilation.

We propose to improve this situation with the following approach:
we start with an interpreter written in C, modify it a little,then
compile it to executable code, extract fragments from this code,
and use them in a native-code compiler that generates code by
concatenating and patching these fragments.

In this way the language implementor can start out with (and,if
necessary, fall back to) an implementation that satisfies the re-
quirements of portability and high compilation speed, and still
achieve execution speed comparable to a simple native-codecom-
piler (as used in many JITs).

You can view this approach in two ways:

• You can see it as a way to speed up an interpreter by turn-
ing it into a JIT compiler. This is the way the technique is
presented in most of this paper.

• Or you can see it as a way of reducing the retargeting effort
needed in a native-code compiler, with the additional benefit
of having an interpreter to fall back to (e.g., if the language
implementor does not have a machine with a specific archi-
tecture available for testing the port). It is important to re-
member this viewpoint when comparing with other work for
generating compilers out of interpreters (Section 1.3).

We think that the main application area for this technique isfor im-
plementing new languages, and for speeding up existing languages
that have been implemented as interpreters in the past (e.g., Perl,
Python, Ruby, PHP).

In this paper we first present an overview of our approach (Sec-
tion 2), then discuss some of the issues in more detail (Section 3),
and present results for our proof-of-concept implementation (Sec-
tion 4). Finally, in Section 5 we compare our work with related
work in-depth.

The main contribution of this paper is in using this approachfor
a native-code compiler, including fall-back strategies for cases
where our methods are not applicable (e.g., dealing with non-
relocatable code, see Section 3.3), and the empirical results from
a proof-of-concept implementation (Section 4). We also present
a new and more general method for finding places to patch in the
fragments (Section 3.5).

1.1 Why not write a compiler directly?

The native code resulting from the approach proposed in thispa-
per is still quite a bit slower than the code from an optimizing
native-code compiler such as gcc, and is comparable in speedto
code from fast and simple native-code compilers like bigForth and
iForth (see Section 4), so why would our approach be interesting?
For the following reasons:

Portability With our approach, you start out with and can fall
back to an interpreter that can run on a new architecture with-
out any porting effort (e.g., Gforth-0.6.2 runs out of the box
on IA64, AMD64, and ARM, three architectures that it has
not been tested on before release), whereas if you write just
a native-code compiler, it will not run on new architectures
without retargeting (and that typically requires someone who
is familiar with the compiler internals).

Paper and BibTeX entry are available at http://www.complang.tuwien.ac.at/papers/. This paper was published in:
Parallel Architecture and Compilation Techniques (PACT’ 04), pages 41-50

If you implement an interpreter for portability and a native-
code compiler for better speed on some platforms (the ap-
proach taken by, e.g., Ocaml), this will require more im-
plemenation and maintenance effort than our approach, and
there is also a higher potential for inconsistencies between
the two implementations.

Implementation effort We implemented our approach for the
386 architecture on top of the Gforth interpreter in two
person-weeks (resulting in about 200 lines of code specific
to the native-code compiler), and retargeted it to the PPC ar-
chitecture in less than a person-day (resulting in 91 new or
changed lines compared to the 386 port). See Section 3.8 for
details.

The native-code compilers we compare with (bigforth,
iforth, and gcc) have certainly required more implementation
and retargeting effort. In particular, bigForth has only has
two targets so far (68k and 386) and iForth only one (386),
in both cases without fallback to an interpreter; we believe
that this lack of portability is caused by the higher effort that
retargeting would require. Retargeting gcc has been reported
to require several person-months of effort.

As a further data point, let us look at Ocaml, a system having
both an interpreter and a native-code compiler with relatively
many targets: The Ocaml-3.06 native-code compiler and its
run-time system have 8700 lines of target-independent code
in addition to the 6000 lines of code common to the bytecode
interpreter and the native-code compiler. In addition, they
have 1200–3100 lines of code for each target.

Compilation speed During compilation, our approach just
copies existing code fragments and patches constants into
the appropriate places. It is hard to beat such an approach
on compilation speed, if you want the resulting code to be
faster. By contrast, gcc produces significantly better code,
but does not compile fast enough to serve as a load-and-go
or JIT compiler.

The Ocaml-3.06 byte-code compiler takes 5.5s of CPU time
to compile a 4300-line file on an 800MHz Alpha 21264B
machine; the native-code compiler takes 40.2s (factor 7). For
comparison, our prototype Gforth compiler compiles 3500
lines in 86ms on a 1200MHz Athlon; this is slightly faster
than the Gforth threaded-code compiler.

1.2 Why not write a source-to-source trans-
lator?

A popular approach for language implementation is to compile a
source language into “source” code for another language andthen
compiling that into machine code with an optimizing compiler; C
is most popular as the intermediate language, because C imposes
fewer restrictions and has better compilers than most otherlan-
guages.

The disadvantages of this approach compared to our approachare
the lower compilation speed(unacceptable for an interactive or
JIT compiler1), and that some language features (e.g., run-time

1One reader praised the compilation speed of MSVC compared
to gcc. However, even if MSVC was fast enough, that would be of
little use to someone porting a system to, say, Linux-PPC. More-
over, if MSVC is fast enough, why is the .NET JIT compiler not
implemented as a translator-through-C?

code generation and guaranteed tail-call elimination) cannot be
implemented directly in C, whereas they can be implemented in
an interpreter (even one written in C), and in our interpreter-based
compiler.

1.3 Why not use partial evaluation?

Producing compilers from interpreters has been proposed before,
especially in the context of partial evaluation and programspecial-
ization: Specialize an interpreter for a source program, and you get
a compiled version of that program.

However, these proposals solve a different problem than ourap-
proach; in particular, they do not attack the retargeting issue, they
merely push it down into the specializer, or even further:

• Most partial evaluators output source code for a program-
ming language, so the resulting compiler would actually be
a source-to-source translator, with the corresponding compi-
lation speed disadvantage.

• Some systems, like Tempo [NHCL98] and DyC [GMP+00],
are able to produce native code directly. But these systems
have to be retargeted themselves: E.g., DyC is based on a
conventional compiler (Multiflow) and retargeting DyC is
at least as hard as any compiler. Tempo pioneered some of
the techniques we use for retargeting, but we introduce addi-
tional techniques that make retargeting easier and applicable
to more architectures (see Section 3.5).

On the practical side, specializers are complex systems that are
currently mostly available as research prototypes, without the
long-term maintenance guarantee that language implementors re-
quire of their tools.

In contrast, our approach is simple enough that it can be imple-
mented and maintained with relatively small effort (compared to
the rest of the language implementation) by the language imple-
mentors themselves, without creating a dependence on the devel-
oper of a partial evaluator or an interpreter retargeting library.

2 Basic Idea

This section demonstrates our approach on a running example. We
start with a plain interpreter, then add several previouslyproposed
optimizations, and finally (Section 2.6) perform a new step that
results in the complete elimination of interpreted code.

2.1 Running Example

Consider the Java expressionx?y+1000:z. The corresponding
JVM code produced by thejavac compiler is:

iload_1 ; x
ifeq else ; ?
iload_2 ; y
sipush 1000 ; 1000
iadd ; +
goto cont ; :

else: iload_3 ; z
cont:

Our running example will be the following piece of that JVM code:

Threaded Code

sipush
1000
iadd
goto
cont

Executable code (Interpreter)
mov 0(IP),tmp ; tmp=IP[0]
mov TOS,(SP) ; SP[0]=TOS
add $-4,SP ; --SP
add $8,IP ; IP+=2
mov tmp,TOS ; TOS=tmp
jmp *-4(IP) ; goto *IP[-1]

mov 4(SP),tmp ; tmp=SP[1]
add $4,SP ; SP++
add $4,IP ; IP++
add tmp,TOS ; TOS+=tmp
jmp *-4(IP) ; goto *IP[-1]

mov 0(IP),IP ; IP=IP[0]
add $4,IP ; IP++
jmp *-4(IP) ; goto *IP[-1]

Figure 1. Threaded code and the corresponding parts of the
interpreter

sipush 1000 ; 1000
iadd ; +
goto cont ; :

2.2 Threaded Code

The fastest interpreters use threaded code [Bel73] to minimize
dispatch overhead. Threaded code represents each VM instruc-
tion as address of the routine that implements the instruction; the
code for dispatching the next instruction consists of fetching the
VM instruction, jumping to the fetched address, and incrementing
the instruction pointer. This technique cannot be implemented in
ANSI C, but it can be implemented in GNU C using the labels-as-
values extension.2

Figure 1 shows threaded code for our example, and the routines of
the interpreter that are called to execute the VM instructions (as
386 assembly code, with VM register names instead of real regis-
ter names; note that%esp is used by GCC for its own purposes, so
our SP is in some other register and we cannot use thepush and
pop instructions).

In Fig. 1 the machine code enters each routine with the instruction
pointer (IP) pointing to the memory location just after the VM in-
struction (e.g., in our example IP points to 1000 when thesipush
code is entered); each routine updates IP to point just afterthe next
VM instruction, and then jumps to the address pointed to by the
VM instruction. The stack grows down. The top-of-stack element
(TOS) is kept in a register. The stack pointer (SP) points to where
the top-of-stack element would be if it were in memory.

2.3 Static Superinstructions

One way to improve performance is to provide VM superinstruc-
tions that have the effect of a sequence of simple VM instructions,
and to replace sequences of simple VM instructions with appro-
priate superinstructions [Pro95, HATvdW99, EGKP02]. Figure 2

2With a little bit of conditional compilation, it is easy to write
an interpreter such that it uses threaded code with gcc, and uses
some ANSI C-compliant technique with other compilers.

Threaded Code

sipush_iadd
1000
goto
cont

Executable code (Interpreter)

mov 0(IP),IP ; IP=IP[0]
add $4,IP ; IP++
jmp *-4(IP) ; goto *IP[-1]

mov 0(IP),tmp ; tmp=IP[0]
add $8,IP ; IP+=2
add tmp,TOS ; TOS+=tmp
jmp *-4(IP) ; goto *IP[-1]

Figure 2. Threaded code with static superinstructions

shows the result of using a superinstructionsipush iadd instead
of the sequence ofsipush followed byiadd.

In this case the code for the superinstruction is shorter than the
code for each of the simple VM instructions, because the superin-
struction does not change the stack depth (no SP update necessary)
and only accesses TOS (no stack memory access necessary).

2.4 Dynamic Superinstructions and Replica-
tion

The interpreter cannot provide a static superinstruction for every
possible sequence of simple instructions; in fact, practical consid-
erations (in particular, the space required for compiling the inter-
preter) limit the number of static superinstructions to several hun-
dred. Another way to create superinstructions is by simply con-
catenating the executable code of the VM instructions, and leaving
the dispatch code between the VM instructions away (see Fig.3)
[PR98].

These dynamic superinstructions are not as well optimized as
static superinstructions, but they reduce the dispatches more ef-
fectively, and dispatches are expensive [EG03].

Dynamic superinstructions can be reused if the same sequence oc-
curs several times [PR98], but having a separate instance ofthe
superinstruction for each occurence of a sequence in the threaded
code (replication) is both simpler to implement and improves the
branch prediction accuracy of the remaining dispatches [EG03].

2.5 Do we need IP?

With dynamic superinstructions and replication, the dynamically
generated code is already quite close to what a simple native-code
compiler would produce. In particular, this code needs VM dis-
patches only when a VM branch is taken. However, a lot of the
remaining code deals with IP, i.e., the pointer to threaded code.

The threaded code and IP are still needed for the following pur-
poses:

• To find the native code to execute after a dispatch (i.e., after
a taken VM branch).

• To access immediate arguments of VM instructions (in our
example, 1000 and cont).

How can we eliminate these uses, and thus the threaded code and
IP?

Threaded Code

sipush_iadd
1000
goto
cont

Executable code (dynamic)
mov 0(IP),tmp ; tmp=IP[0]
add $8,IP ; IP+=2
add tmp,TOS ; TOS+=tmp
mov 0(IP),IP ; IP=IP[0]
add $4,IP ; IP++
jmp *-4(IP) ; goto *IP[-1]

mov 0(IP),tmp ; tmp=IP[0]
add $8,IP ; IP+=2
add tmp,TOS ; TOS+=tmp
jmp *-4(IP) ; goto *IP[-1]

mov 0(IP),IP ; IP=IP[0]
add $4,IP ; IP++
jmp *-4(IP) ; goto *IP[-1]

Executable code (Interpreter)

Figure 3. Dynamic superinstructions

Executable code (dynamic) Executable code (Fragments)

add $0x5555, TOS

jmp $0x55555555

add $1000,TOS
jmp cont_code

Figure 4. Generating code by concatenating and patching fragments

2.6 Fragments and Patching

The approach we propose here is to have code fragments that con-
tain immediate arguments instead of references through IP.When
copying the code fragment during the dynamic code generation,
we patch the desired immediate argument into the fragment in
place of the original immediate argument. And instead of us-
ing threaded code dispatch for VM branches, we just use direct
branches; the target addresses are patched just like other immedi-
ate arguments. Figure 4 shows how this approach works in our
example.

How do we get the fragments and the patch information? A frag-
ment is basically the executable code for a VM instruction; if the
VM instruction has no inline argument, it is basically the same
code as in the dynamic superinstruction case. The patch infor-
mation is found by comparing two fragments for VM instructions
that differ only in constants used in the VM instruction. This is
discussed in more detail in Section 3.5.

2.7 Benefits

The benefit of this approach over the fastest previous interpreter-
based techniques is faster code, for three reasons:

• All accesses to the interpreted code are eliminated, in par-
ticular accesses to immediate arguments and accesses to
threaded code pointers for control flow.

• Our approach uses direct jumps instead of performing con-
trol flow through threaded code dispatch (load and indirect
jump). For conditional VM branches, this results in a direct
conditional branch instead of a conditional branch followed
by a dispatch.

• The VM instruction pointer is eliminated, freeing a register,
and eliminating all the instructions for updating the VM in-
struction pointer.

start_sipush_iadd_n:
 TOS += 0x5555;
end_sipush_iadd_n:
 goto *next;
...
memcpy(dest, &&start_sipush_n,
 (&&end_sipush_n)-(&&start_sipush_n));

Figure 5. The GNU C code for a fragment, and code for copy-
ing the fragment to dest

The benefits of this approach over writing a JIT compiler in the
usual way are that it needs very little platform-specific code; and
if even that is not available, we can fall back to an interpretive
implementation, and thus achieve full portability.

Another way of looking at this is: if you implement a language
through an (efficient) interpreter, you do not need to redo a lot of
work if you want to improve performance with a simple compiler;
you can just extend the work you did on the interpreter.

3 Details

This section discusses a number of specific issues that we ignored
in Section 2. Some of the techniques presented in this section are
not original to this paper and we present them for completeness.
Read Section 5 for a detailed account.

3.1 Finding Fragments

How do we find the start and the end of each fragment? We put
labels before and after each fragment, and we use GNU C’s labels-
as-values extension to convert these labels into the start and end
addresses of the machine code for the fragment3 (ANSI C only

3Recent GCC versions need the-fno-reorder-blocks flag
in order to guarantee that the order of labels and code in the source
is preserved in the native code.

allows using labels ingoto statements); eventually these labels are
used in amemcpy() call. Figure 5 shows the code for a fragment,
and how code for copying the fragment might look (in reality the
copying code will be more general, though).

3.2 Context

How do we ensure that the code fragments that we use fit together?
In particular, how do we ensure that the register allocationis the
same between fragments?

We put all the fragments in the same C function, and we put an
indirect jump after each fragment (see Fig. 5). This indirect jump
can jump to any fragment; this forces the compiler to make sure
that fragments can follow each other in any order.

For fragments containing patchable direct jumps, we initially let
the direct jump branch to an indirect jump, in order to ensure
the correct register allocation (the actual target is set later, during
patching).

3.3 Non-Relocatable Code

Not all executable code can be copied easily to another location.
E.g., absolute references within the fragment (e.g., conditional
branches on the MIPS architecture) or PC-relative references to
code outside the fragment (e.g., calls on 386 or SPARC) require
more complex relocation capabilities than just copying thecode.
How do we deal with such fragments?

We can try to use the same techniques for relocating this codethat
we use for patching fragments with embedded immediate argu-
ments (see Section 3.5).

However, if all else fails, we have to classify the fragment as non-
relocatable, and we have to find a way to still use it.

Our approach in this case is to call the fragment in its original
location (in the executable code of the C function containing all
the fragments), using the indirect jump at the end of the fragment
to return to our dynamically generated code. To achieve this, we
load the variablenext with the address of the code after the non-
relocatable fragment, and then jump to the non-relocatablefrag-
ment4 (see Fig. 6). The indirect jump at the end of the fragment
will then jump back to the dynamic code.

3.4 Relocatability information

How do we find out if a fragment is non-relocatable? We compare
two fragments produced from the same C source code.

We have tried several variants of implementing this idea, but the
one that we have finally settled on is to have two instances of the
function containing the fragments. The benefits over havingall
fragment instances in the same function are: 1) no spurious dif-
ferences from different stack offsets of equivalent fragment-local

4On many architectures we will have to use an indi-
rect jump to perform this (long) jump; GCC-3.2 and later
rearrange indirect branches so we cannot copy them (even
with -fno-reorder-blocks, see http://gcc.gnu.org/bugzilla/
show bug.cgi?id=15242). However, the gcc maintainers are work-
ing this problem, and hopefully it will be fixed in GCC-3.5.

variables; 2) we can use more unique fragments (the number of
fragments per function is limited by gcc’s memory usage).

One of these functions contains additional padding betweenthe
fragments (created withasm(".skip 16");), to make relative
inter-fragment jumps different.

3.5 Patch information

How do we know where to patch the fragments? For each frag-
ment, we produce two instances that differ only in the embedded
constants; then we compare their machine code to produce theen-
try for the fragment in the patch table (see Fig. 7).

When comparing the fragments, we have to check for all the ways
in which the fragment-producing compiler encodes the constants.
For each architecture, there are only a few such ways. E.g., on
the 386 architecture constants are encoded as sign-extended 1-byte
values or as 4-byte values, either PC-relative (for branch and jump
targets) or absolute (for other immediate arguments); on the Pow-
erPC architecture constants are either encoded as 16-bit or26-bit
PC-relative addresses, or as absolute values that are splitinto two
16-bit chunks or (if representable) are stored in one sign-extended
16-bit field.

By wisely choosing the constants that we put into the fragments,
we can ensure that we recognize all the places that contain the
constants, that the encodings we want to have are used, and that we
recognize the encodings and offsets correctly, and which constants
in the fragments correspond to which logical argument.

In particular, in our prototype we use word-size arguments (where
the most significant bits are either 10 or 01) for non-branches to
ensure that we get full-length encodings; the two constantsfor the
same argument of the two instances of the same fragments are bit-
wise complements of each other to ensure that they are recognized
as being different. And the two 16-bit halves are different to en-
sure that we recognize which half is which.

In addition to having fragments for word-size constants, wecould
provide alternative fragments for smaller constants (e.g., within
the signed 8-bit range for the 386, and the signed 16-bit range for
PPC), to allow to use better code; our prototype implementation
does not do this yet.

For patchable branches, our current prototype uses just some tar-
gets within the same function (different targets for different in-
stances), with the targets being not-too-close to avoid getting short
operand encodings.

On some platforms, large constants (e.g., 64-bit constantson the
Alpha architecture) are not embedded in the code, but referenced
through a constant table. In these cases, the varying bits inthe
machine code have no obvious relation to the constant, and we
will have to find another way to deal with such constants. One
way is to use a constant table ourselves, which is accessed through
a constant table pointer and offsets; the offsets are small enough to
be created without the constant table. This is not yet implemented
in our prototype implementation.

If we are not able to determine the encoding and position of the
constants (e.g., if the compiler used an encoding we did not ex-
pect), or if a fragment containing an inline constant turns out to be

Executable code (dynamic) Executable code (Fragments)

 mov $cont1, next
 jmp nonrelocatable1
cont1:

nonrelocatable1:
 ...
 jmp *next

Figure 6. Calling a non-relocatable fragment

 81 c1 ef cd ab 89
(add $0x89abcdef, TOS)

 81 c1 10 32 54 76
(add $0x76543210, TOS)

Executable code (Fragments)

Compare

Fragment&patch table

sipush_iadd_n:
 fragment start
 fragment length: 6 bytes
 number of consts: 1
 const 1 relative: no
 const 1 offset: 2 bytes
goto:
 ...

Figure 7. Generating patch information by comparing fragments

non-relocatable, we have to give up and fall back on the interpreter.
However, this has not happened in our prototype implementation.

3.6 Determining the encodings

We hardcoded the information about the various constant encod-
ings used in the architecture into our prototype. In a production
version, we will abstract this information out into architecture-
specific include files; we expect each of these files to containa
few dozen lines of code.

However, the encodings can also be determined automatically by
comparing fragments: For this approach, we need more instances
of the same fragments with different constants. E.g., for each bit
in the constant, we might have an additional fragment whose con-
stant differs from the constant of the previous fragment only in that
bit, allowing to determine which bit in the constant corresponds to
which bit in the fragment.

This approach would be able to deal with arbitrary splittingof the
constant into parts (e.g., 16-16 for PPC, 19-13 for SPARC), as
well as nonsequential distribution of the bits of the constant (e.g.,
in HPPA branches). Its limitations are that it can only recognize
encoding schemes we expect (such as absolute and PC-relative),
and the scheme has to be simple enough that changing one bit in
the constant changes one bit in the fragment.

One problem with this idea is that it is probably easier to write
a dozen or so encoding descriptions for the architectures weare
interested in than to implement this idea. While complete machine
independence is a worthwhile goal, the encoding description is not
the only thing missing for this goal; we also have to provide code
for ensuring instruction cache consistency (typically a few lines of
code), and we know of no automatic way to generate that code.

;a call to foo
 add $-4,SP ;SP--
 movl $retaddr,(SP) ;SP[0]=&&retaddr
 jmp foo ;goto foo
retaddr:
;and a return
 mov (SP),%eax ;tmp=SP[0]
 add $4,SP ;SP++
 jmp *%eax ;goto *tmp

Figure 8. A simple call (no parameter or frame handling) to
foo and a simple return

3.7 Calls and Returns

Of course, we can only use features in the generated code for
which we can generate fragments from C source code. A particu-
larly nasty problem in this respect are VM-level calls and returns.

One might think that we can just use fragments generated fromC
code for a C call or areturn, but this does not work, because this
does not call or return to code in the context of the function we
are working in; instead, the calling sequence typically changes the
C-stack pointer (invalidating all references through thatpointer),
and the return sequence also tries to restore registers.

There is no other way to get the C compiler to produce call and
return instructions in a portable way, so we have to emulate calls
and returns using ordinary jumps: the calling code providesthe
return address as literal and saves it somewhere, then jumpsto the
target; the return code just performs an indirect jump (goto *...
in GNU C) to the return address (see Fig. 8).

Of course, this approach does not provide the best performance;
the calling code is larger than otherwise, and the return code does
not utilize the branch prediction usually provided by a processor’s
return stack.

If we want performance to be better, we can provide machine-
specific call and return fragments, and fall back to the generic ap-
proach for machines without special support.

3.8 Implementation Effort

Implementing the techniques described in this paper in Gforth re-
quired detailed knowledge of the Gforth VM, and the threaded-
code generator, and of the techniques themselves. The changes
needed were mostly local to the part of Gforth that is also involved
when implementing dynamic superinstructions.

In addition, we had to change a few other things in the code gener-
ator where (originally) data was mixed with the threaded code and
accessed through the return address of Forth functions. We mod-
ified such code so that it explicitly takes a pointer to the data as a
literal; this works both for the native-code and the threaded-code
compiler. While this particular issue is probably relatively Gforth-
specific, we expect that other language implementations also have
issues where threaded-code addresses may be needed insteadof
native-code addresses or vice versa (e.g., exception tables in the
JVM).

Overall, implementing this approach required about two person-
weeks, and resulted 200 lines of code specific to the native-code
compiler, plus small changes in other code generation partsto
eliminate threaded/native code-address mixups.

Retargeting the prototype to PowerPC required a knowledge of
the part of the Gforth system that deals with patching (i.e.,very
localized knowledge), and a knowledge of the way that constants
and branch targets are represented in the 386 and PPC architecture.
This required less than a person-day of work and resulted in 91
new or changed lines compared to the 386 port.

4 Experimental Results

We implemented the approach presented above in Gforth, a
product-quality Forth system5, for the 386 and the PowerPC ar-
chitecture.

We ran a number of benchmarks on this system, on a number of
Gforth variants and other Forth systems, and, for some bench-
marks, GCC:

gforth-plain Gforth without static or dynamic superinstructions
(gforth-fast --no-dynamic --ss-number=0). This is
an efficient classic threaded-code interpreter.

gforth-super Gforth with static and dynamic superinstructions
and replication (gforth-fast). 13 static superinstructions
are used.

gforth-native Our prototype implementation. It uses the same 13
static superinstructions as gforth-super.

bigforth (version 2.0.11). A fast and simple native-code compiler
(uses peephole optimization).

iforth (version 1.12.1125). Another simple native-code compiler.

5You may be wondering why we have not used this approach
with a JVM implementation. The reason is that we currently do
not have a useful JVM interpreter to which we could apply this
approach (the Cacao interpreter that we used in earlier workwas
very limited in the set of benchmarks it could run).

Program Version Lines Description
cross 0.6.9 3793 Forth cross-compiler
tscp 0.4 1625 chess
brainless 0.0.2 3519 chess
vmgen 0.6.9 2641 interpreter generator
bench-gc 1.1 1150 garbage collector
CD16sim 1.1 937 CPU emulator
pentomino 516 puzzle solver
sieve 23 prime counting
bubble 74 bubble sort
matrix 55 integer matrix multiply
fib 10 double-recursive function
mm-rtcg 109 run-time code generation
compile 3519 brainless compile-only

Figure 9. Benchmark programs used

gcc (version 2.95.1 on the Athlon, 3.3.2 on the PPC). This uses
hand-written C code for the benchmarks, compiled withgcc
-O3. The compile time is not included in the timings for the
gcc results (in contrast to the Forth systems).

Figure 9 shows the benchmarks we used for our experiments.
We used the following platforms: a 1200MHz Athlon (Thun-
derbird, VIA KT133 chipset, 384MB PC100 SDRAM, Linux-
2.4.18, glibc-2.1.3) and a 450MHz PPC7400 (PowerMac3.1 sys-
tem, 256MB RAM, Linux-2.4.22, glibc-2.3.2).

Figure 10 and 116 show how the various systems perform com-
pared to gforth-native. Not all benchmarks run on all systems (in
particular, we only have C code for sieve, bubble, matrix, and fib),
so we show different sets of bars for different benchmarks.

On the Athlon the speedup of gforth-native over gforth-plain is
between 1.4 (mm-rtcg) and 5.2 (matrix), median 2.7. On the
PPC7400 the speedup is between 1.43 (cross) and 2.42 (fib), me-
dian 1.94.

The speedup on the Athlon over gforth-super is between 1.06 (ma-
trix) and 1.49 (tscp), median 1.32; on the PPC7400 the speedup is
between 1.29 (cross) and 1.87 (fib), median 1.52. These speedups
may appear relatively small compared to some of the other speed
differences shown here, but if we put it in relation to the relatively
small effort required to achieve it, we find that this is a veryworth-
while improvement.

The differences between the machines can be explained in thefol-
lowing way: Branch mispredictions are more expensive on the
Athlon, therefore gforth-plain loses more compared to gforth-
super and gforth-native on this machine. The remaining indi-
rect branches in gforth-super are more expensive on the PPC7400
(which does not predict indirect branches) than on the Athlon
(which predicts nearly all of them correctly), so replacingthese
indirect branches by direct branches helps the PPC7400 more.

The speedup of bigForth over gforth-native is rather inconsistent,
between 0.12 (CD16sim) and 2.09 (fib), median 1.19. The extreme
slowdown of bigForth on CD16sim is caused by placing code close
to frequently written data, resulting in cache consistencyoverhead.

6We did not use pentomino on the PPC7400, because this
benchmark requires conditional branches over more then 32KB,
and we have not implemented this on the PPC port yet.

cross
tscp

brainless
vmgen

bench-gc
CD16sim

pentomino
sieve

bubble
matrix

fib
mm-rtcg

compile

speedup

1/8.0

1/5.0

1/3.0

1/2.0

1/1.4

1.0

1.4

2.0

3.0
gforth-plain gforth-super gforth-native

bigforth iforth gcc

Figure 10. Speedup of various systems relative to gforth-native on a 1200MHz Athlon

cross
tscp

brainless
vmgen

bench-gc
CD16sim

siev
bubble

matrix
fib

mm-rtcg

speedup

1/2.0

1/1.4

1.0

1.4

2.0

3.0

5.0

8.0
gforth-plain gforth-super gforth-native gcc

Figure 11. Speedup of various systems relative to gforth-native on a 450MHz PPC7400

The speedup of iForth over gforth-native is between 0.83 (tscp)
and 1.41 (fib), median 0.93. We conclude that gforth-native is
competetive in performance with simple hand-written native-code
compilers.

The speedup of gcc-2.95.1 on the Athlon over gforth-native is
between 1.50 (sieve) and 3.03 (matrix), median 2.44. On the
PPC7400 the speedup of gcc-3.3.2 over gforth-native is between
1.84 (fib) and 9.09 (matrix), median 4.90. This is not a fair com-
parison (gcc is not an interactive system, it compiles much slower,

and the compile time is not included in the gcc timings), but it
provides a kind of upper bound for the speedup that we can still
achieve. There is still quite a bit of work left to do, especially on
the PPC7400. We explain the slowdown of gforth-native over gcc
at least partially with the stack-in-memory accesses; we have seen
a good speedup (especially on the PPC 7400) from eliminatinga
part of this overhead with static stack caching [EG04].

Concerning compilation speed, thecompilebenchmark shows that
gforth-native compiles faster than gforth-plain or gforth-super; the

reason is that a good part of the compile time is spent in the front
end, which is written in Forth and gets a speedup from the faster
execution in gforth-native. The small additional compile time in
the back-end of the compiler more than pays for itself. The gforth-
native compiler is also faster than bigForths compiler.

5 Related Work

Rossi and Sivalingam [RS96] proposed dynamically generating
native code by copying fragments from an interpreter.

Piumarta and Riccardi [PR98] expanded on that and implemented
this idea in a full-scale interpreter. The main difference between
their work and ours is that their generated code still uses the inter-
preted code for immediate arguments and for control flow. There-
fore they do not patch literals and branch targets into the native
code.

They deal with non-relocatable code by falling back to ordinary
threaded code, which is not possible in our IP-less approach(see
Section 3.3 for our solution). They rely on programmer-supplied
tables for recognizing relocatability, in contrast to our automatic
way (Section 3.4).

Other recent work [EG03] looked at various ways to reduce the
dispatch branch cost in interpreters. The present work investigates
eliminating interpreter dispatch altogether and everything related
to it, resulting in even more performance.

Tempo [NHCL98] is a run-time specializer that works by produc-
ing C code for fragments and concatenating and patching them
at run-time. The difference from the present work is that Tempo
specializes specific functions for specific inputs, whereaswe im-
plement a general compiler; in particular, Tempo does not have to
deal with arbitrary sequences of fragments (see Section 3.2).

Another difference is that we have a fall-back strategy for dealing
with non-relocatable code (Section 3.3), while Tempo has none,
making it harder to retarget Tempo (relocation has to work inall
cases).

Finally, Tempo uses the meta-information from the object file to
produce the patch information, whereas we compare two native-
code fragments with different embedded constants (see Sec-
tion 3.5). One disadvantage of Tempo’s approach is that it is
hard to port to many 64-bit systems, where large constants like ad-
dresses are not stored in the code, but in separate constant tables.
Another disadvantage is that it always uses the full-size encoding
of constants, and does not allow for more efficient encodings.

Vitale and Abdelrahman [VA04] explore turning an interpreter into
a JIT compiler by concatenating and patching (specializing) ma-
chine code derived from an interpreter, just like we do. The main
difference from our work is that they use somewhat differenttech-
niques for deriving the fragments and patch information than we
do, and their methods require postprocessing the assembly code
produced by GCC. One interesting difference is that they remate-
rialize the instruction pointer in places where it is necessary, which
may also be a useful idea for our approach (there were a few places
in Gforth that we changed so that we would not need an instruction
pointer). They implemented their approach for Tcl on SPARC,and
observed a lot of I-cache misses, in contrast to us (that is probably
mainly due to the differences between the Tcl and the Forth VMs

and benchmarks).

Qemu is a 386 emulator using dynamic translation. It achieves
portability by compiling pieces of C code and concatenatingthe
resulting machine code fragments. For filling in constants,it uses
linker relocation information, like Tempo.

Performing compilation based on an interpreter has been proposed
before, in particular by specializing (partially evaluating) an inter-
preter for a specific application program [JGS93, GMP+00]. With
the exception of Tempo, those works ignore retargeting and leave
it to the back-end of the specializer or (for source-to-source spe-
cializers) to a later compiler run. In contrast, the main focus of the
present work is on creating an easily retargetable back-end. So,
despite superficial similarities, we are attacking a different prob-
lem than the partial evaluation community.

Dynamic optimizers like DynamoRIO have a hard time with in-
terpreters; however, calling the API of an enhanced dynamicopti-
mizer in certain places in the interpreter, these problems can be
eliminated and even a good amount of speedup can be gained
[SBB+03]. While these optimizations can achieve some of the
benefits of our approach, they do not achieve them all (e.g., the
instruction pointer is not eliminated). Moreover, these optimiza-
tions are limited to platforms that have a dynamic optimizerthat
supports this API (currently only 386). It is also not clear how
the effort for enhancing the dynamic optimizer and the interpreter
compares to the effort required for our approach.

Other approaches of generating compiler back-ends have been
proposed; in particular,VCODE [Eng96] and GNU Lightning pro-
vide fast code generation interfaces for dynamic code generation.
Unfortunately, they suffer from the usual problems of native-code
compilers: only a few platforms are supported, with no fall-back
option for other platforms. Moreover, you have to use specific
primitives in code generation, whereas our approach allowsdefin-
ing your own primitives in C, letting the C compiler optimizethat,
and using these primitives for interpretation or compilation.

Collberg [Col02] proposed and implemented ADT, a system that
creates machine descriptions for a code generator automatically
by analysing the assembly code produced by a C compiler for var-
ious test programs. Differences from the approach proposedin
Section 3.6 are that the code generators produced by ADT work
through an assembler and linker (less compilation speed), and
that ADT learns a lot about the actual instructions and registers,
whereas our approach treats the fragments as mostly opaque and
discovers only the patch information.

Debaere and Van Campenhout [DV90] have proposed instruction-
path coprocessing as a way to speed up interpreters: The copro-
cessor would interpret the program and generate a sequence of
instructions for the main processor. These instructions would only
perform data computations, whereas the control flow of the inter-
preted program and the interpreter is performed and eliminated by
the coprocessor, eliminating most of the interpreter overhead. Our
approach also eliminates most of the interpreter overhead,but it
keeps the control flow of the interpreted program; and of course,
our approach does not require special hardware.

6 Conclusion

We present an approach that fills the gap between the portability
of interpreters and the execution speed of native-code compilers.
We start out with code fragments extracted from a variant of an
interpreter, concatenating and patching them into native code for
the program we want to compile. This approach completely elimi-
nates all references to the interpreted code and the VM instruction
pointer used for referencing the interpreted code.

There are a number of technical problems to solve for implement-
ing this approach, and we present solutions for them: The frag-
ments and their patch information have to be determined, we have
to determine relocatability, and deal with non-relocatability.

This approach results in execution speed comparable to sim-
ple native-code compilers, in speedups of up to 5.2 over a fast
threaded-code interpreter, and up to 1.87 over an interpreter with
dynamic superinstructions and replication (the fastest interpretive
technique). The cost of implementing this approach in an existing
interpreter was about two person-weeks for the first target (386),
and a day for the second target (PPC).

Acknowledgements

The referees of PLDI’03 and PACT’04 provided helpful comments
on earlier drafts of this paper. Ulrich Neumerkel and Peter Sestoft
provided insight into compiler construction with partial evalua-
tion.

7 References

[Bel73] James R. Bell. Threaded code.Communications of
the ACM, 16(6):370–372, 1973.

[Col02] Christian S. Collberg. Automatic derivation of
compiler machine descriptions.ACM Transac-
tions on Programming Languages and Systems,
24(4):369–408, July 2002.

[DV90] Eddy H. Debaere and Jan M. Van Campenhout.
Interpretation and Instruction Path Coprocessing.
The MIT Press, 1990.

[EG03] M. Anton Ertl and David Gregg. Optimizing indi-
rect branch prediction accuracy in virtual machine
interpreters. InSIGPLAN ’03 Conference on Pro-
gramming Language Design and Implementation,
2003.

[EG04] M. Anton Ertl and David Gregg. Combining stack
caching with dynamic superinstructions. InIVME
’04 Proceedings, pages 7–14, 2004.

[EGKP02] M. Anton Ertl, David Gregg, Andreas Krall, and
Bernd Paysan.vmgen — a generator of efficient
virtual machine interpreters.Software—Practice
and Experience, 32(3):265–294, 2002.

[Eng96] Dawson R. Engler.VCODE: A retargetable, ex-
tensible, very fast dynamic code generation sys-
tem. InSIGPLAN ’96 Conference on Programming
Language Design and Implementation, pages 160–
170, 1996.

[GMP+00] Brian Grant, Markus Mock, Matthai Philipose,
Craig Chambers, and Susan J. Eggers. DyC: An

expressive annotation-directed dynamic compiler
for C. Theoretical Computer Science, 248(1–
2):147–199, 2000.

[HATvdW99] Jan Hoogerbrugge, Lex Augusteijn, Jeroen Trum,
and Rik van de Wiel. A code compres-
sion system based on pipelined interpreters.
Software—Practice and Experience, 29(11):1005–
1023, September 1999.

[JGS93] Neil D. Jones, Carsten K. Gomard, and Peter Ses-
toft. Partial Evaluation and Automatic Program
Generation. Prentice Hall, 1993.

[NHCL98] François Noël, Luke Hornof, Charles Consel, and
Julia L. Lawall. Automatic, template-based run-
time specialization: Implementation and experi-
mantal study. InIEEE International Conference on
Computer Languages (ICCL’98), pages 123–142,
1998.

[PR98] Ian Piumarta and Fabio Riccardi. Optimizing di-
rect threaded code by selective inlining. InSIG-
PLAN ’98 Conference on Programming Language
Design and Implementation, pages 291–300, 1998.

[Pro95] Todd A. Proebsting. Optimizing an ANSI C in-
terpreter with superoperators. InPrinciples of Pro-
gramming Languages (POPL ’95), pages 322–332,
1995.

[RS96] Markku Rossi and Kengatharan Sivalingam. A
survey of instruction dispatch techniques for byte-
code interpreters. Technical Report TKO-C79,
Faculty of Information Technology, Helsinki Uni-
versity of Technology, May 1996.

[SBB+03] Gregory T. Sullivan, Derek L. Bruening, Iris
Baron, Timothy Garnett, and Saman Amaras-
inghe. Dynamic native optimization of interpreters.
In Interpreters, Virtual Machines and Emulators
(IVME ’03), pages 50–57, 2003.

[VA04] Benjamin Vitale and Tarek S. Abdelrahman. Cate-
nation and specialization for Tcl virtual machine
performance. InIVME ’04 Proceedings, pages 42–
50, 2004.

