Summary: Retargeting JIT compilers by using C-compiler
generated executable code

Mark Tokutomi
January 27, 2011

This paper presents a novel approach to creating a Just-in-Time compiler
for a language which has an interpreter whose source code is available. The
idea is to leave most of the code generation up to a modified version of
the interpreter, but to “patch” in necessary information (such as addresses
and arguments to functions) when the code is dynamically-generated. This
approach has advantages over each of the alternative methods currently in
use, although it still must make tradeoffs in the same way.

The three approaches to programming language implementation discussed
by the authors are native-code compilers, interpreters, and source-to-source
compilation (in this paper the reasonable assumption is made that the tar-
get language is C). Though each of these approaches is useful in specific
situations, each also has significant weaknesses relative to the others. By
executing in a language which is presumably spread across a wide variety
of platforms, both interpreters and source-to-source compilers can offer a
high level of portability between systems and architectures. In the case of
source-to-source compilation, all that is required is a compiler in the target
language, and for an interpreter, either the source code or an executable
must be provided. On the other hand, a native-code compiler is specific to
the architecture for which it was written; additionally, even if ported to an-
other architecture, fully optimizing the code it generates may require very
thorough familiarity with the architecture to which it is being ported. In
exchange for portability, a native-code compiler gains the notable benefits
of speed in both execution and compilation. An unavoidable feature of an
interpreter is slow execution: the fact that it reads the program’s source as
it is executing makes optimization much more difficult than in a traditional
compiler, and makes some types of optimization entirely impossible. How-
ever, a corollary to this drawback of interpreters is the benefit that no time
is spent compiling the code. Depending on the development environment
and expected usage of a piece of software, either approach can be advanta-
geous. Finally, a source-to-source compiler has the capacity to generate code
that executes at least as fast as a native-code compiler. Since the target
language is usually very widespread, highly developed compilers with strong



optimizing capabilities can be used, and additionally if the target language
is low-level enough, the first-stage compiler can optimize the code before it
is even passed to the target language’s compiler.

By using a (modified) interpreter to generate the code used by the Virtual
Machine, the authors’ approach immediately gains much of the portability
enjoyed by interpreted languages. Even in cases where the software hasn’t
been ported to the target architecture, the interpreter can be used instead,
giving this approach an excellent fall-back option in terms of compatibility.
Although modifying the interpreter requires some knowledge of the target
architecture, the task is of much lesser magnitude than writing a native-code
compiler. By using code compiled from C as the input to the Virtual Ma-
chine, the JIT approach also gains the benefit of the optimization capabilities
of GCC, leading to faster execution time (although still likely slower than
the code generated by a source-to-source or native-code compiler, since op-
timizing during JIT compilation is much more difficult than optimizing with
a full compiler). Finally, due to the straightforward nature of its compila-
tion, this approach also offers faster compile time than any other approach
besides an interpreter. A final benefit to the authors’ approach is the short
implementation time: the authors claim that implementing their approach
on the first architecture took two person-weeks, and that it was ported to a
second in under a person-day.

The basic idea behind this compilation technique is to generate each Vir-
tual Machine instruction using the source language’s interpreter, and then
at run-time to dynamically generate input to the Virtual Machine by com-
bining these compiled instructions. This approach is improved through the
use of static and dynamic superinstructions. Static superinstructions have
the benefit of decreasing the resulting code’s size; additionally, because they
execute entirely as one instruction rather than linking multiple calls together,
they can be rewritten to use fewer memory accesses and stack pointer up-
dates. Dynamic superinstructions are not built-in like static superinstruc-
tions. Rather, they are generated simply by concatenating the architecture’s
regular instructions. This approach does not allow for the same degree of
optimization as adding static superinstructions, since memory accesses can
no longer be optimized, but it does greatly reduce the number of necessary
dispatch calls. To further reduce the number of necessary dispatch calls, the
authors place the code fragments into a monolithic C function. This enables
the Virtual Machine to jump between instructions directly, rather than stor-
ing an instruction pointer to indirectly jump between code fragments. To



prevent the compiler from reorganizing the code in a way that would break
this approach, each instruction is followed in the function by an indirect
jump. Since the compiler does not have sufficient information to determine
at compile time in what order the instructions will ultimately execute, it is
forced to generate code that allows the instructions within the function to
execute in any order.

An interesting side effect of the reduction in the number of dispatches
that this approach achieves through the use of superinstructions is a greatly
reduced use of the Virtual Machine’s instruction pointer. The instruction
pointer is still used to pass immediate arguments to instruction calls, as well
as to continue execution after a Virtual Machine branch. However, both of
these uses can be rendered unnecessary by dynamically patching the argu-
ments into the code fragments corresponding to the instruction at execution.
This patching technique is what allows the authors’ approach to execute so
much faster than a normal interpreter. It allows the JIT compiler to avoid
threaded dispatch, accessing the interpreted code (to retrieve arguments and
control pointers), and the use of the instruction pointer (which additionally
frees up a register for other potential uses). Additionally, since it makes such
extensive use of code generated by the interpreter, it is also what gives this
approach greater portability than a native-code compiler.

Most of the implementation details presented in the paper simply deal
with placing “markers” in the generated code in order to identify the proper
location for arguments to instructions, as well as to determine what encodings
are used by the architecture. For example, generating two code fragments
which are identical save for the value of a constant being passed to the func-
tion allows the developers to identify the constant’s location in the resulting
code, which enables them to see where the code needs to be patched at
compile time in order to modify the arguments to the instruction.

A more interesting (or at least less mechanical) implementation issue dis-
cussed in the paper, however, is that of dealing with non-relocatable code.
While the approach of patching necessary arguments in at compile time and
calling instructions from within a single function works in most cases, there
are situations (all architecture-specific in the paper) in which a piece of code
cannot be executed in this way (an example given in the paper is a program-
counter-relative reference to code not contained in the given fragment). In
cases where the code must be executed from its context within the compiler
code, the authors use the indirect jumps between each code fragment to act as
a substitute instruction pointer: the address of the next instruction is loaded



into memory, and then jumped to. The authors determine whether a given
code fragment is relocatable by generating two versions of the function con-
taining the code fragments. The first version is unmodified; the second uses
the instruction asm(“skip 16”); to pad between the fragments. This makes
jump instructions within each fragment point to different relative locations
(as compared to the original version), and observing what issues (if any) this
modification creates allows the developers to determine which fragments may
not be relocated during compilation.

A final detail that must be considered in order to implement this approach
is the fact that the generated code is incapable of correctly implementing
calls and returns at the Virtual-Machine-level. The generated code exists
within the Virtual Machine and maintains its own stack pointer and register
allocations; the authors point out that calling a function or using a return
statement within the generated code will generally clobber both of these.
Hence, the only portable way offered by the authors is to save the address to
which we wish to return, and then use jump statements to enter and exit a
Virtual Machine branch. They point out that more efficient implementations
are possible, but such implementations would have to be machine-specific.

The results presented in the paper are an improvement over the existing
solutions in every way one would expect; additionally, this approach stands
up to native-code compilation better than (I at least) expected. The authors
use a proof-of-concept implementation based on the Gforth interpreter (for
the Forth programming language); they test it against two Gforth-based in-
terpreters, and two native-code Forth compilers. They also test it against C
code compiled with GCC; however, since most of the test suite is composed
of programs written in Forth, the authors write some simple routines (matrix
multiplication, a prime sieve, bubble sort, and a recursive fibonacci function)
in order to compare their implementation to GCC’s output. Predictably, the
code generated by the authors’ solution executes faster than either of the
interpreters in every case, even taking into account compilation time. Sur-
prisingly, however, only one of the native-code Forth compilers is on average
faster; the other is actually slightly slower on average. Further, the authors’
solution compiles faster than the Forth compiler it was tested against. Obvi-
ously, GCC’s output executes significantly faster in every test (one of the test
Forth compilers is nearly as fast at executing the recursive fibonacci function,
but that’s most likely the fault of C rather than GCC). However, the authors
state that they tested their code against GCC mainly to determine how much
faster the generated code could theoretically be (its output is something of

4



a practical upper bound for code executed with a Just-in-Time compiler).
The tests compare the authors’ initial implementation (for a processor with
a 386 architecture) to both Forth compilers, both intepreters, and GCC; ad-
ditionally, a version the authors ported to the PowerPC architecture is tested
against both interpreters and GCC. GCC’s advantage is considerably larger
on the PowerPC, which the authors state can be mitigated by adding static
stack caching to the PowerPC implementation.

The approach taken by the authors of this paper is an interesting one,
and it certainly seems to yield observable benefits compared to an approach
using just an interpreter or native-code compiler. Additionally, I can’t fault
their implementation, and though there are probably ways it could be im-
proved, I'm unfamiliar with what those techniques might be. My critical
opinions regarding this paper are almost entirely regarding the evaluation of
their implementation, and whether the benefits it yields over source-to-source
compilation and native-code compilers justify its weaknesses.

Though this implementation proved to be faster than one of the native-
code compilers against which it was tested, it was slower than the other
in nearly every benchmark. While the ease of implementation and shorter
compile time would certainly be of great importance in some applications, it
seems likely that in a situation where the software would see use over an ex-
tended period of time, and where execution speed was a higher priority than
compilation time, a native-code compiler would still be of greater benefit.
Additionally, both of these benefits would almost certainly be magnified fur-
ther by the use of a source-to-source compiler rather than a native-code com-
piler. Although both the authors’ implementation and the native-code com-
piler against which it was tested yield faster execution than an interpreter,
the optimization capabilities of GCC, in addition to first-pass optimizations
which could be implemented in the source-to-C translation, give such an ap-
proach a tremendous advantage in situations where execution speed is most
important.

Additionally, though the solution presented here is almost certainly eas-
ier to implement than either a native-code or source-to-source compiler, the
representation provided by the authors of the time taken to port the code to
another architecture seems somewhat disingenuous. The port was performed
by someone with detailed knowledge of the current architecture, the com-
piler itself, and the destination architecture; this situation seems unlikely to
arise often in practice. Further, the port, though functional, runs substan-
tially slower than the original implementation on some benchmarks due to



issues with the architecture which weren’t accounted for when the compiler
was ported. Finally, the benchmark comparison between the authors’ solu-
tion and GCC seems somewhat tenuous. Without seeing the source code
used to compare the two, it’s impossible to know how well the algorithms
used work with GCC’s optimization capabilities. Particularly, a recursive
fibonacci implementation is (to my knowledge) incapable of being efficiently
implemented in C, and the prime number sieve could have been any of several
implementations. While the comparison between the two wasn’t a particu-
larly pivotal point of the paper, such an opaque benchmarking system instills
little confidence in the results, which would be very difficult to replicate.



