
Retargeting JIT compilers by using C-compiler
generated executable code

Mark Tokutomi

January 27, 2011



Problem: Tradeoffs in Language Implementations

I Portability

I Speed of Execution

I Speed of Compilation

I Native-Code Compilers
I Fast compilation, fast execution, poor portability

I Interpreters
I Highly portable, no compilation time, poor execution speed

I Source-to-Source Compilers
I Fast execution (assuming good compiler), very portable, large

compilation overhead



Application domain for this solution

I New language implementation
I This approach adds little additional work beyond writing an

interpreter

I Execution speed improvement for interpreted languages
I This approach displays dramatic execution time improvement

without writing a full native-code compiler



Overview of authors’ approach

I Modify an existing interpreter written in C
I Restructure the interpreter’s source code to be more amenable to the

rest of this process
I Work with compiled code for the modified interpreter
I Write a native-code compiler which pieces together fragments of this

compiled code

I Authors’ description of this approach:
I Can be though of as turning an interpreter into a JIT compiler
I Can also be thought of as making a native-code compiler more

portable
I This approach leaves the interpreter as a fall-back option if the

compiler hasn’t been written for a particular environment



Benefits of this approach

I Portability
I If necessary, can fall back on the interpreter for execution
I Much more portable than partial evaluation (specializing an

interpreter for a specific program)
I Partial evaluation approaches are generally either source-to-source or

platform-targeted

I Implementation Effort
I Native-code compiler implementation is labor-intensive, and may

lead to inconsistencies between platforms
I In addition to being laborious to implement, must be carefully

maintained

I Authors claim their approach is much faster to implement

I Compilation Speed
I The compiler functions by concatenating pieces of compiled

interpreter code, so compilation is very fast



Modifications to the Interpreter

I Direct Threading
I Keep addresses of function calls in instruction pointer, jump to next

address at end of function execution
I Improvement: Static Superinstructions

I Combine common groups of instructions into a single call
I Shortens code, and can potentially reduce number of memory

accesses
I Improvement: Dynamic Superinstructions

I Concatenate code for instructions when compiling
I Doesn’t allow for as many optimizations as static, but still reduces

dispatch calls



Modifications to the Interpreter (cont’d)

I Can we remove the need for the Instruction Pointer?
I Normally used to access immediate arguments

I During dynamic code generation, we can patch the argument directly
into the code

I Used to return from a VM branch
I Patch in the target address directly

I This gives faster execution than an interpreter
I No longer need to access interpreted code (all arguments and branch

pointers are in the code itself)
I Superinstructions avoid the load associated with threaded dispatch
I Not using an Instruction Pointer avoids many register updates



Implementation Issues

I Avoiding problems due to code fragmentation
I When modifying the interpreter, put all instruction fragments into

one function
I Add indirect jumps after each fragment, and after branches in

fragments that will be patched with jump addresses
I Prevents register allocation problems between fragments and ensures

that they can be executed in any order

I Non-Relocatable Code
I Can be caused by various details in a particular code fragment
I Instead of calling the fragment out of context with the JIT compiler,

call it in the C function
I Use the indirect jump from the previous step to return to normal

execution



Implementation Issues (cont’d)

I Determining relocatability of code fragments
I Create two versions of function containing all the fragments
I Pad between the fragments with an assembly instruction

I Moves fragments relative to each other, and can then check whether
any fail due to the relocation

I Determining how to patch code fragments
I Duplicate each fragment
I In the duplicate, change the fragment’s constants

I Highlights where the constants are in the code so they can be patched
I A similar (but more involved) approach can be used to determine

information about the encodings being used for constants



Implementation Issues (cont’d)

I VM Calls and Returns
I Cannot use generated C code to perform a call/return at the VM

level
I The C code clobbers the stack pointer, and may overwrite registers

I Instead of using actual function calls and returns in C, they must be
emulated

I Save the return address, jump to the location being called, then jump
to the return address

I This approach is less efficient, but is the only portable solution to
this problem

I Better-performing solutions would rely on machine-specific
instructions



Results

I The product presented in the paper is the authors’
proof-of-concept implementation

I It is a native-code Forth compiler created for the Athlon and
PowerPC architectures using the techniques outlined in the paper

I Benchmarks are presented comparing this compiler to a
variety of other implementations

I Compared this approach to two Gforth interpreters, two Forth
native-code compilers, and GCC (in some of the applications)

I GCC benchmarks were based on handwritten C code
I Since the Forth programs were not available in C, the authors

compared implementations of a prime sieve, matrix multiplication,
bubble sort and a recursive fibonacci function to versions written in
Forth.

I Benchmarks for the Forth systems included compile time (for the
compiled systems) to more directly compare them to the interpreted
systems



Results

I The product presented in the paper is the authors’
proof-of-concept implementation

I It is a native-code Forth compiler created for the Athlon and
PowerPC architectures using the techniques outlined in the paper

I Benchmarks are presented comparing this compiler to a
variety of other implementations

I Compared this approach to two Gforth interpreters, two Forth
native-code compilers, and GCC (in some of the applications)

I GCC benchmarks were based on handwritten C code
I Since the Forth programs were not available in C, the authors

compared implementations of a prime sieve, matrix multiplication,
bubble sort and a recursive fibonacci function to versions written in
Forth.

I Benchmarks for the Forth systems included compile time (for the
compiled systems) to more directly compare them to the interpreted
systems



Results cont’d

I Comparison to interpreted Forth systems
I As one would expect, the authors’ native-code compiler outperforms

the two interpreters (compilation time + execution time vs.
execution time) on every test

I The speed increases over the plain Gforth interpreter have a median
factor of 2.7, while the increases over the interpreter using
superinstructions have a median of 1.32 (on an Athlon processor)

I On a PowerPC processor, the median speedup is 1.52 over the faster
interpreter

I Comparison to native-code compilers
I The handwritten native-code compilers fluctuate above and below

the authors’ implementation in performance
I The (generally) better-performing compiler has a median speedup

over the authors’ of 1.19, and performs significantly better in some
cases

I The other compiler has a median speedup factor of .93, and
outperforms the authors’ compiler only in only two benchmarks



Results cont’d

I Comparison to GCC
I On both the Athlon and PPC platforms, GCC outperforms the

authors’ implementation
I The median speedup on the Athlon is 2.44, while on the PPC it is 4.9
I One caveat about these timings is that the authors included

compilation in their timings, but not in those for GCC
I Despite the problems with this comparison, the authors treat it as an

upper-bound
I They also mention having improved the speed of their compiler on

the PPC architecture since these tests



Opinions regarding ideas, techniques, etc

I This idea is an interesting approach, and the implementation seems
to accomplish the authors’ stated goals

I The techniques implemented seem reasonable
I I didn’t notice anything about the authors’ implementation that I

would argue with
I It’s possible that there are techniques the authors could have used to

improve their approach that I’m unfamiliar with



Opinions (cont’d)

I Benefits of this approach
I Some of the claimed benefits are clear, while others are more

situation-specific
I Given the choice between the two systems, it seems as though few

circumstances would favor an interpreter
I The development time for this solution is clearly shorter than for a

native-code compiler
I However, the faster native-code compiler is still faster in most

applications
I Depending on how long the product would be used, and in what

situations, a native-code compiler might still be preferred
I Additionally, developing either solution would naturally require a

programmer with detailed knowledge of the architecture and
language; the savings is in the development time



Opinions cont’d

I This solution is undisputably faster than a source-to-source compiler
in terms of compilation speed

I However, a source-to-source compiler is similarly easier to develop
than a native-code compiler

I Additionally, since it makes use of a compiler like GCC, a
source-to-source compiler has the potential to generate very fast
code (one would expect benchmarks similar to those produced by
GCC)

I In situations where more time is spent executing than compiling, a
source-to-source compiler might still be a valuable alternative



Opinions cont’d

I Time investment
I The authors present all figures regarding this as lines of code and

man-hours
I Lines of code are a questionable measurement of complexity in most

circumstances

I This implementation (as mentioned by the authors) required detailed
knowledge of the Gforth interpreter

I Additionally, it required great familiarity with each of the
architectures used

I Porting this solution to another architecture by different developers
might take significantly more time

I When the authors ported it to the PPC, the person coding was
already very familiar with their implementation

I Additionally, the authors likely already had an idea of what
modifications would be necessary for the port



Opinions cont’d

I Benchmarking
I The comparisons between various Forth systems should be generally

accurate
I The comparisons to GCC seem much less direct

I The source code is not provided, so it’s difficult to know whether it’s
written in a way that GCC can optimize well, and determining this
would require very specialized knowledge of GCC

I The prime sieve, for example, could be implemented in a variety of
ways (the paper doesn’t mention which sieve was used), and the
Fibonacci implementation is recursive, so GCC’s relatively weak
performance on that benchmark is unsurprising

I Although this entire point is perhaps overly critical, the general
technique of comparing algorithms across languages seems brittle,
and very difficult to replicate (especially without the source code)


