
Precise Garbage Collection in C

Pankhuri

February 16, 2011

1 What is this paper about ?

Magpie is a source-to-source transformation for C programs that enables precise garbage collection,
where precise means that integers are not confused with pointers and the liveness of a pointer is
apparent at the source level. It serves as a bridge between C and C++ and precise garbage
collection. It works by gathering sufficient information for the collector via static analyses and
queries to the programmer. This information is transferred to the runtime by translating the
original source code.

2 Precise / Conservative Garbage Collection.

1. Conservative Garbage Collection: It is a style of garbage collection that treats the stack
as an ordinary range of memory, and assumes that every word on the stack is a pointer into
the heap. Thus, the collector marks all objects whose addresses appear anywhere in the stack,
without knowing for sure how that word is meant to be interpreted.

(a) Problems:

• Numerical values to be interpreted as live pointers to otherwise dead objects, causing
memory leaks.

• Conservative collectors may mistake dead pointers as roots, leaving objects in the
heap indefinitely.

2. Precise Garbage Collection: It is a style of garbage collection that requires exact infor-
mation about whether or not a given word in the heap is a pointer or not. It counts references
toward reachability only for words that correspond to values whose static type is a pointer
type, and only for words that correspond to variables that are in scope.

3 C Semantics and Garbage Collection

The key constraint a C program must obey to use precise GC is that the static types in the program
source must match the programs run-time behavior,at least to the extent that the types distinguish
pointers from non-pointers.

Major Concerns:

1



3.1 Differentiate Pointers / Non - Pointers

1. For precise GC, the values of variables and expressions typed as non-pointers must never be
used as pointers to GC-allocated objects, because objects are not considered to be reachable
through such references.

2. In addition, to support GC strategies that relocate allocated objects, Magpie disallows refer-
ences through non-pointer types even if the same object is reachable through a pointer-typed
reference.

3. GC implementations that relocate objects require that a pointer-typed object either refer
to a GC-allocated object or refer outside the region of GC-allocated objects; otherwise, an
arbitrary value might happen to overlap with the GC-allocation region and get moved by a
collection.

4. Supports Interior Pointers.

5. Supports Unions and (Void*).

3.2 Connect allocation with shape of allocated data.

1. Magpie requires that the types of data allocated by a C program fit into four categories:
atomic(non-pointer) data, arrays of pointers, single structures, and arrays of structures.

2. A combination of type and category is determined from each allocation expression, which
must use a recognized allocation function, typically malloc, calloc, and realloc, but Magpie
supports a configurable set of allocators.

3.3 When Magpie Fails?

1. Pointer Manipulation: Pointer arithmetic can shift an address so that it does not refer to
an allocated object, and then further arithmetic can shift the address back. If a collection
can occur between the arithmetic operations, then a reachability assumption of our GC has
been violated.

int* p = GC_malloc(sizeof(int) * 1024); p -= 1024; work(p); p[1024];

2. Saving Pointers to disk and later dereferencing them.

3. Using exclusive-or operations to collapse pointers in a doubly-linked list.

4. Pointers as Integers and Integers as Pointers.

• Integer in a pointer type location?

(a) It GC supports relocation then program may change the value stored at that pointer.

2



(b) If GC does not support relocation then it may cause an object which should be freed
to be retained.

• Pointer stored in an Integer location?

(a) Program may crash as the memory could be garbage collected anytime.

5. Unconverted Libraries:

• A library function might keep a pointer that it was given and try to use the pointer in
later calls. Memory could be garbage collected second time it is referenced leading to
program crash.

• A library function might invoke a callback that uses precise GC before the library func-
tion returns. When a library invokes callbacks into code that uses GC, then any objects
originally passed to the function may have moved by the time the callback returns.

• Solution for above problems can be :

(a) Have programmers tag the functions calls which save pointers.

(b) Convert the libraries also.

6. Explicit Deallocation: An explicit non-GC deallocation might release a page of memory
back to the underlying allocator, and the GC might later acquire that page. If the deallocated
reference is not cleared, then it may point into the GC-allocation area without pointing to
an allocated object.

7. If unconverted free () releases a page of memory, and if the GC starts using the same page
during do some allocating work (), then s’s reference to p is left pointing into the GCable
region and probably not to the beginning of an object. If the GC does not allow interior
pointers to GCable objects, the program can crash.

4 Transformation

4.1 Requirements for Garbage Collection

1. Which words in the heap are root references?

2. Where references exist in each kind of object?

3. What kind of object each object in the heap is?

After Collector has gathered above information it iterates through the list of root references, mark-
ing the referenced objects as it goes. For each object in the set of marked objects, propagation
works by looking up what kind of object that object is and then invoking the appropriate traversal

3



function on it. When a fix point is reached (no more objects have been added to the set of marked
objects), any unmarked object is deallocated.

4.2 Design

4.3 Phases of Magpie

1. Allocation Analysis: The allocation analysis determines what kind of object each allocation
point creates. Magpie uses this information to tag allocated objects as having a particular
type.This tag is used by mark and repair functions to generate appropriate traversal functions.

2. Structure Analysis: The structure analysis determines which words in an object kind are
pointers. Magpie uses this information to generate traversal functions. The mark function is

4



used to traverse a structure or array during the mark phase of a collection, while the repair
function is used to update pointers when objects are moved.

3. Call Graph Analysis: The call graph analysis generates a conservative approximation of
what functions each function calls. Magpie uses this information to eliminate roots in the
local stack. If a program calls an unknown function, Magpie must assume that the function
may trigger a garbage collection. Thus, it must convert the source to notify the collector of
any live local pointer variables for the collector to use them as roots. If, however, the call
graph analysis has determined that the call will not lead to a garbage collection, it does not
need to transfer this information to the collector.

4. Tracking Local Variables: This phase is one of the most crucial phases of Magpie it
identifies the pointers on the stack and communicates to garbage collector. It performs this
communication by generating code to create shadow stack frames on the C stack, which the
collector can then traverse to find the pointers in the normal C stack.

There are four types of stack frames used in Magpie:

• Simple Frames

• Array Frames

• Tagged Frames

• Complex Frames

All these frames have first two words in common. First word points to the previous frame.
The second word is separated into 2 parts. Last two bits of this word indicate the type of
frame while rest of the bits is used as length field. In simple frames, the length field gives
the total size of the frame. For array and tagged frames, the length refers to the number of
arrays or tagged items in the frame. For complex frames, the length refers to the number
of informational words appended to the end of the frame. In all cases but complex frames,
the frames are capable of storing information about more than one stack-bound variable at a
time.This merging avoids as much space overhead as possible.

5



To decrease the number of variable information saved Magpie uses Call, Liveliness and Ini-
tialization optimization.

4.4 Handling Unions:

When a type contains a union of pointer and non-pointer types, the mark and repair functions
need to follow and update a pointer variant only when it is active. The active variant of a union
is tracked using an extra byte outside of the object whenever a field of the union is assigned or
its address is taken. The automatically generated mark and repair functions consult the byte to
determine whether to follow or repair the pointer variant.

6



In addition, active-variant information must be copied between unions on struct assignment and
struct copying via memcpy.

4.5 Handling Global and Static Variables:

Magpie locates all static/global variables and registers them in initialization functions that are
called when the program starts. Each variables location is registered with a tag that provides mark
and repair functions and, if necessary, union variant tracking.

5 Implementation and Experience

5.1 PLT Scheme.

5.2 Experience with C programs.

Unlike PLT scheme which was developed in a way that constraints imposed by precise GC was
followed, normal c programs are expected to violate the assumptions made by Precise GC.Results
for C programs showed that precise GC is a viable alternative to manual memory management for
a typical C program. However, it is not especially beneficial for short-running programs without
untrusted components.

5.3 Experience with Linux Kernel.

In this environment, the benefits of precise GC are less clear, for two reasons. First, the user/kernel
interface of an OS tends to be much narrower than a high-level language interface,directly preventing
user-mode code from causing space leaks in the kernel. Second, low-level concurrency and hardware-
level interactions can create problems for a precise collector.Precise GC is less obviously desirable
in these settings.

7



6 Conclusion

In most cases, Magpie performs within 20 percent (faster or slower) than the original C code
and requires no more effort than the existing Conservative collector. The memory use of Magpie-
converted code similarly tracks the Conservative collector, and in some cases removes memory
spikes created by Conservative GC. According to me Magpie is beneficial for application which
follows constraints imposed by precise collection. It can also help in solving memory issues for long
running applications but for short programs and applications with many third party plugins it does
not provide substantial benefit.

8


