
• vmgen - A Generator of Efficient Virtual Machine Interpreters

• M. Anton Ertl, David Gregg, Andreas Krall, and Bernd Paysan

• presented by Peter Bailey

Summary

• vmgen generates fast interpreters from instruction descriptions

• also generates parts of associated tools

– profiler

– debugger

– disassembler

– code generator

Motivation

• writing/modifying an interpreter toolset is tedious and error-prone

– many parts can be automated

• can generated interpreters compete with those hand-written in assembly?

Motivation

• C compiler does most of the complicated things

• vmgen makes modifying an instruction set easier than rewriting anything in assembly

Process

• inputs: description of instruction set

• outputs: C code

– interpreter

– profiler

– debugger

– VM code disassembly

– VM code generation

Process

• producing a working interpreter requires a bit more work

– C code for interpreter skeleton

– C code from vmgen

– C compiler

Process

Figure 1: vmgen process

Vmgen input example

• input format:

iadd:

iadd (i1 i2 -- i)

i = i1 + i2;

– name

– stack effect, input and output types

– C implementation code

Output example

I_iadd:{

int i1, i2, i;

NEXT_P0;

i1 = vm_Cell2i(sp[1]);

i2 = vm_Cell2i(sp[0]);

sp += 1;

{

i = i1 + i2;

}

NEXT_P1;

sp[0] = vm_i2Cell(i);

NEXT_P2;

}

Architecture

• designed and optimized for stack-based VMs

– but register-based VMs are possible

2

• generated interpreter uses direct threading

– but indirect threading is possible

• flexible!

Optimizations

• vmgen interpreters are designed for optimization

• built-ins

– TOS caching, software pipelining, efficient stack usage

• tail duplication for branch prediction

• superinstructions

Existing optimizations

• TOS caching

• software pipelining/scheduled dispatch

– interleave instruction execution with instruction fetch

• superinstructions

Superinstructions

• not superoperators

– superoperators are tree operators

– superinstructions are DAG operators, work on stack-based interpreters

• arbitrary combination of previously-defined instructions

Superinstructions

• consequences

– C compiler ideally generates more efficient code

– VM code generator generates fewer instructions

– interpreter interprets fewer instructions

– profiler can recommend superinstructions

Novel optimizations

• store elimination

– example:

dup (i -- i i)

– avoid creating a temporary variable and pushing it twice

– doesn’t work with superinstructions

• tail duplication for branch prediction

3

Performance

• two interpreters built with vmgen

– Gforth: Forth interpreter

– Cacao int: JVM interpreter, with threaded code instead of byte code

Performance

• Gforth is faster than Win32Forth

– Win32Forth is written in assembly, but uses indirect threading and PIC

• Gforth is slower than BigForth

– BigForth compiles Forth to native code

Performance

• Cacao int is faster than the DEC JVM native JIT compiler for some benchmarks

• Cacao int is slower than Cacao native, but only by a factor of two for most benchmarks

– Cacao int and Cacao native share synchronization and garbage collection mechanisms, and Cacao
int spends 30% of its time in these routines

Performance

• optimizations were generally beneficial

• but architecture-dependent

– example: TOS caching improved performance on PPC by 20%, but net effect on a particular
Alpha machine was 5%

• and benchmark-dependent

Discussion

• quality of resulting interpreter depends on quality of compiler used to build interpreter

• authors claim GCC does a good job, but did not verify all compiled code

• authors manually allocated registers in Gforth because GCC inappropriately spilled important inter-
preter registers

4

