
vmgen - A Generator of Efficient Virtual Machine
Interpreters

M. Anton Ertl, David Gregg, Andreas Krall, and Bernd Paysan
Presented by Peter Bailey

May 6, 2011

M. Anton Ertl, David Gregg, Andreas Krall, and Bernd Paysan Presented by Peter Baileyvmgen - A Generator of Efficient Virtual Machine Interpreters

Summary

vmgen generates fast interpreters from instruction descriptions

also generates parts of associated tools

profiler
debugger
disassembler
code generator

M. Anton Ertl, David Gregg, Andreas Krall, and Bernd Paysan Presented by Peter Baileyvmgen - A Generator of Efficient Virtual Machine Interpreters

Motivation

writing/modifying an interpreter toolset is tedious and
error-prone

many parts can be automated

can generated interpreters compete with those hand-written in
assembly?

M. Anton Ertl, David Gregg, Andreas Krall, and Bernd Paysan Presented by Peter Baileyvmgen - A Generator of Efficient Virtual Machine Interpreters

Motivation

C compiler does most of the complicated things

vmgen makes modifying an instruction set easier than
rewriting anything in assembly

M. Anton Ertl, David Gregg, Andreas Krall, and Bernd Paysan Presented by Peter Baileyvmgen - A Generator of Efficient Virtual Machine Interpreters

Process

inputs: description of instruction set

outputs: C code

interpreter
profiler
debugger
VM code disassembly
VM code generation

M. Anton Ertl, David Gregg, Andreas Krall, and Bernd Paysan Presented by Peter Baileyvmgen - A Generator of Efficient Virtual Machine Interpreters

Process

producing a working interpreter requires a bit more work

C code for interpreter skeleton
C code from vmgen
C compiler

M. Anton Ertl, David Gregg, Andreas Krall, and Bernd Paysan Presented by Peter Baileyvmgen - A Generator of Efficient Virtual Machine Interpreters

Process

Figure: vmgen process

M. Anton Ertl, David Gregg, Andreas Krall, and Bernd Paysan Presented by Peter Baileyvmgen - A Generator of Efficient Virtual Machine Interpreters

Vmgen input example

input format:

iadd:

iadd (i1 i2 -- i)

i = i1 + i2;

name
stack effect, input and output types
C implementation code

M. Anton Ertl, David Gregg, Andreas Krall, and Bernd Paysan Presented by Peter Baileyvmgen - A Generator of Efficient Virtual Machine Interpreters

Output example

I_iadd:{

int i1, i2, i;

NEXT_P0;

i1 = vm_Cell2i(sp[1]);

i2 = vm_Cell2i(sp[0]);

sp += 1;

{

i = i1 + i2;

}

NEXT_P1;

sp[0] = vm_i2Cell(i);

NEXT_P2;

}

M. Anton Ertl, David Gregg, Andreas Krall, and Bernd Paysan Presented by Peter Baileyvmgen - A Generator of Efficient Virtual Machine Interpreters

Architecture

designed and optimized for stack-based VMs

but register-based VMs are possible

generated interpreter uses direct threading

but indirect threading is possible

flexible!

M. Anton Ertl, David Gregg, Andreas Krall, and Bernd Paysan Presented by Peter Baileyvmgen - A Generator of Efficient Virtual Machine Interpreters

Optimizations

vmgen interpreters are designed for optimization

built-ins

TOS caching, software pipelining, efficient stack usage

tail duplication for branch prediction

superinstructions

M. Anton Ertl, David Gregg, Andreas Krall, and Bernd Paysan Presented by Peter Baileyvmgen - A Generator of Efficient Virtual Machine Interpreters

Existing optimizations

TOS caching

software pipelining/scheduled dispatch

interleave instruction execution with instruction fetch

superinstructions

M. Anton Ertl, David Gregg, Andreas Krall, and Bernd Paysan Presented by Peter Baileyvmgen - A Generator of Efficient Virtual Machine Interpreters

Superinstructions

not superoperators

superoperators are tree operators
superinstructions are DAG operators, work on stack-based
interpreters

arbitrary combination of previously-defined instructions

M. Anton Ertl, David Gregg, Andreas Krall, and Bernd Paysan Presented by Peter Baileyvmgen - A Generator of Efficient Virtual Machine Interpreters

Superinstructions

consequences

C compiler ideally generates more efficient code
VM code generator generates fewer instructions
interpreter interprets fewer instructions
profiler can recommend superinstructions

M. Anton Ertl, David Gregg, Andreas Krall, and Bernd Paysan Presented by Peter Baileyvmgen - A Generator of Efficient Virtual Machine Interpreters

Novel optimizations

store elimination

example:

dup (i -- i i)

avoid creating a temporary variable and pushing it twice
doesn’t work with superinstructions

tail duplication for branch prediction

M. Anton Ertl, David Gregg, Andreas Krall, and Bernd Paysan Presented by Peter Baileyvmgen - A Generator of Efficient Virtual Machine Interpreters

Performance

two interpreters built with vmgen

Gforth: Forth interpreter
Cacao int: JVM interpreter, with threaded code instead of
byte code

M. Anton Ertl, David Gregg, Andreas Krall, and Bernd Paysan Presented by Peter Baileyvmgen - A Generator of Efficient Virtual Machine Interpreters

Performance

Gforth is faster than Win32Forth

Win32Forth is written in assembly, but uses indirect threading
and PIC

Gforth is slower than BigForth

BigForth compiles Forth to native code

M. Anton Ertl, David Gregg, Andreas Krall, and Bernd Paysan Presented by Peter Baileyvmgen - A Generator of Efficient Virtual Machine Interpreters

Performance

Cacao int is faster than the DEC JVM native JIT compiler for
some benchmarks

Cacao int is slower than Cacao native, but only by a factor of
two for most benchmarks

Cacao int and Cacao native share synchronization and garbage
collection mechanisms, and Cacao int spends 30% of its time
in these routines

M. Anton Ertl, David Gregg, Andreas Krall, and Bernd Paysan Presented by Peter Baileyvmgen - A Generator of Efficient Virtual Machine Interpreters

Performance

optimizations were generally beneficial

but architecture-dependent

example: TOS caching improved performance on PPC by 20%,
but net effect on a particular Alpha machine was 5%

and benchmark-dependent

M. Anton Ertl, David Gregg, Andreas Krall, and Bernd Paysan Presented by Peter Baileyvmgen - A Generator of Efficient Virtual Machine Interpreters

Discussion

quality of resulting interpreter depends on quality of compiler
used to build interpreter

authors claim GCC does a good job, but did not verify all
compiled code

authors manually allocated registers in Gforth because GCC
inappropriately spilled important interpreter registers

M. Anton Ertl, David Gregg, Andreas Krall, and Bernd Paysan Presented by Peter Baileyvmgen - A Generator of Efficient Virtual Machine Interpreters

