
GC Assertions: Using the Garbage Collector to
check heap properties

Shirley Gracelyn

February 16, 2011

Motivation

1 Automatic memory management frees some burden from
programmers

2 Fewer memory management errors

Motivation

1 Automatic memory management frees some burden from
programmers

2 Fewer memory management errors

3 Disadvantages: Does not provide any control or information
over behavior of the memory to the programmers

4 Memory which is reachable but which will never be used again
might not be freed

Examples

Is there only a single instance of this type?

Will this object be reclaimed at the end of next garbage
collection cycle?

Are there any outstanding references to this object?

Main Idea - GC Assertions

Efficiency of automatic memory management is retained

Programmer can query the garbage collector for violations in
object or data structure properties

Ensures less time and space overhead in GC assertion checking

Piggyback checks with usual GC tracing process

Limits meta data to be stored in extra bits in object headers

Heap properties

Object life time

Allocation volume

Connectivity

Ownership

Advantages of GC Assertions

Precise than static analysis

Advantages of GC Assertions

Precise than static analysis

Efficient than run time invariant checking

Advantages of GC Assertions

Precise than static analysis

Efficient than run time invariant checking

Accurate than heuristics

Programmer driven approach

Allows to express and capture behavior of objects which is
already known

Heuristics suggest only potential leaks, which needs to be
verified manually

Rather, with assertions, programmers can specify exactly when
the object should be dead, and violations are detected sooner.

Implementation

Jikes RVM 3.0.0

Mark sweep collector

Lifetime assertions: assert-dead(p)

Triggered if object pointed to by p is still reachable

Usage: To check if a particular object is reclaimed at a
specific point in the program

Implementation: Set a spare bit in the object’s header pointed
to by p

Check during next GC cycle if any object has dead bit set

Lifetime assertions: assert-alldead()

Used along with start-region() assertion

Triggered if any object allocated in the region, is not
reclaimed when the assertion is checked

Usage: To check if a code section does not leak memory into
the rest of the application

Lifetime assertions: assert-alldead()

Implementation: Thread specific bit - whether the current
region is part of an alldead region

Queue - to store all objects allocated in the alldead region

On an assert-alldead assertion, the bit is reset.

assert-dead() is called on each object in the queue

Volume assertions: assert-instances(T,I)

Triggered if the number of objects of type T goes over I

Usage: Checking for singleton pattern

Limit the number of objects for performance reasons

Volume assertions: assert-instances(T,I)

Implementation: Assertion is tied to object type, and not
instance

Maintain the instance limit and count for the class

Increment instance count for each object when encountered
during GC cycle

Finally, iterate through list of tracked types to check for
instance limit violation

Ownership assertions: assert-unshared(p)

Triggered if the object pointed to by p has more than one
incoming pointer

Usage: Check if a tree data structure has not accidentally
been changed to a DAG or graph

Implementation: Just set a bit on the object indicating that it
should be unshared, which is checked for during garbage
collection

Ownership assertions: assert-ownedby(p,q)

Triggered if object pointed to by q is not owned by object
pointed to by p

Definition of owner and ownee?

All paths from roots through heap must pass through owner -
Too restrictive

The set of paths through heap to the ownee must include
atleast one path that passes through the owner

Ownership assertions: assert-ownedby(p,q)

Programmer has to identify the larger data structure that
governs its life time

Usage: Assertion ensures that the object will never outlive its
owner

Restriction to lower cost over head - Regions of the heap
belonging to different owners should not overlap

Ownership assertions: assert-ownedby(p,q)

Implementation: On encountering the ownee, GC can check if
the owner was present in this path

But,what if the owner is followed by a previously marked
object?

Repeating the tracing information to check if ownee is
reachable from previously marked object is not a good idea

Bubbling up the ownee information throughout causes
unnecessary space and time overhead

Ownership assertions: assert-ownedby(p,q)

Ownership phase: Start GC tracing with owner objects,
assuming the owners themselves are alive

On visiting the ownee object verify if it belongs to the current
owner, else issue a warning

If another owner is encountered, stop the scan. This owner
will be scanned separately

Normal heap scan: Start from the roots, any ownee
encountered is not properly owned

On violation of assertions

Log an error, but continue executing

Log an error and halt

Force the assertion to be true

Debugging information

Report provides full path through object graph from root to
dead object

Limitation: Identifying the offending object or path is not
possible in all cases

Evaluation

Example 1: Order processing system - destroy() is called on
Order object

assert-dead assertion on Order objects failed

Reason? Customer objects still had a last order field holding
the reference to Order object

Solution: Set back reference pointer to null
� �

Path : Lspec / jbb /Customer ; −>

[L j a va / l ang /Object ; −>

Lspec / jbb / Las tOrder ; −>

[L j a va / l ang /Object ; −>

Lspec / jbb /Order ;
� �

Evaluation

Example 2: Local variable retains a reference to Company
object from the previous iteration

Sample of a memory drag, as object will be reclaimed in next
iteration

Can be detected through calls to assert-instances as more than
one Company instance should not be alive at the same time

Limitations

To insert assert-dead assertion at the right place, programmer
should know when the object should be dead, i.e where the
objects become unreachable

Easier option : ownership assertion

Fixed assertion set - limited expressiveness

Checks are not done immediately - incorrect evaluation due to
changes in heap

