
Software Similarity
Analysis

c© April 28, 2011 Christian Collberg

Clone detection

Duplicates are the result of copy-paste-modify programming.

2 / 49

Clone detection

Duplicates are the result of copy-paste-modify programming.

Problem during maintenance — all copies of bugs need to be
fixed.

2 / 49

Clone detection

Detection phase: locating similar pieces of code in a program.

f3()

P’

f2()

f2() f(r)

P
f1()

〈f1, f3〉

3 / 49

Clone detection

Detection phase: locating similar pieces of code in a program.

Abstraction phase: clones are extracted out into functions.

f3()

P’

f2()

f2() f(r)

P
f1()

〈f1, f3〉

3 / 49

Clone detection algorithm — Finding Clones

Detect(P, threshold , minsize):

1 Build a representation rep of P from which it is convenient to

find clone pairs. Collect code pairs that are sufficiently similar

and sufficiently large to warrent their own abstraction:

res ← ∅
rep ← convenient representation of P

for every pair of code segments f , g ∈ rep, f 6= g do

if similarity(f , g) > threshold &&

size(f) ≥ minsize && size(g) ≥ minsize then

res ← res ∪ 〈f , g〉

4 / 49

Clone detection algorithm — Replace Clones

Detect(P, threshold , minsize):

2 Break out the code-pairs found in the previous step into their

own function and replace them with parameterized calls to this

function:

for every pair of code segments f , g ∈ res do

h(r) ← a parameterized version of f and g

P ← P ∪ h(r)
replace f with a call to h(r1) and g with h(r2)

3 Return res,P

5 / 49

Attack model

We don’t expect programmers to be malicious!

6 / 49

Attack model

We don’t expect programmers to be malicious!

The code becomes naturally “obfuscated” because of the
specialization process.

6 / 49

Attack model

We don’t expect programmers to be malicious!

The code becomes naturally “obfuscated” because of the
specialization process.

The programmer renames variables and replace literals with
new values in the copied code.

6 / 49

Attack model

We don’t expect programmers to be malicious!

The code becomes naturally “obfuscated” because of the
specialization process.

The programmer renames variables and replace literals with
new values in the copied code.

More complex changes are unusual.

6 / 49

What has this to do with software protection?

Skype binary was protected by adding several hundred hash
functions.

7 / 49

What has this to do with software protection?

Skype binary was protected by adding several hundred hash
functions.

Could a clone dector have found them?

7 / 49

Plagiarism of programming assignments

Hand in a verbatim copy of a friend’s program.

8 / 49

Plagiarism of programming assignments

Hand in a verbatim copy of a friend’s program.

Or, make radical changes to the program to hide the origin of
the code.

8 / 49

Plagiarism of programming assignments

Hand in a verbatim copy of a friend’s program.

Or, make radical changes to the program to hide the origin of
the code.

“Borrowing” one or more difficult functions from a friend.

8 / 49

Plagiarism of programming assignments

Hand in a verbatim copy of a friend’s program.

Or, make radical changes to the program to hide the origin of
the code.

“Borrowing” one or more difficult functions from a friend.

Fishing code out of the trash can.

8 / 49

Plagiarism of programming assignments

Hand in a verbatim copy of a friend’s program.

Or, make radical changes to the program to hide the origin of
the code.

“Borrowing” one or more difficult functions from a friend.

Fishing code out of the trash can.

Nabbing code off the printer.

8 / 49

Plagiarism of programming assignments

Hand in a verbatim copy of a friend’s program.

Or, make radical changes to the program to hide the origin of
the code.

“Borrowing” one or more difficult functions from a friend.

Fishing code out of the trash can.

Nabbing code off the printer.

Outsource the assignments to an unscrupulous third party
(“programming-mills”).

8 / 49

Plagiarism detection

Make pair-wise comparisons between all the programs handed
in by the students:

P2

P1

P3

〈P1, P2〉 = 70%
〈P1, P3〉 = 20%
〈P2, P3〉 = 10%

9 / 49

Plagiarism detection — Algorithm

Detect(U, threshold):

res ← ∅
for each pair of programs f , g do

sim ← similarity(f , g)

if sim > threshold then

res ← res ∪ 〈f , g , sim〉
res ← res sorted on similarity

return res

10 / 49

Attack model

The student needs the code to look “reasonable.”

11 / 49

Attack model

The student needs the code to look “reasonable.”

General-purpose obfuscation — probably not a good idea.

11 / 49

Attack model

The student needs the code to look “reasonable.”

General-purpose obfuscation — probably not a good idea.

Renaming windowSize to sizeOfWindow — OK.

11 / 49

Attack model

The student needs the code to look “reasonable.”

General-purpose obfuscation — probably not a good idea.

Renaming windowSize to sizeOfWindow — OK.

Renaming windowSize to x93 — not OK.

11 / 49

Attack model

The student needs the code to look “reasonable.”

General-purpose obfuscation — probably not a good idea.

Renaming windowSize to sizeOfWindow — OK.

Renaming windowSize to x93 — not OK.

Replace a while-loop with a for-loop — OK.

11 / 49

Attack model

The student needs the code to look “reasonable.”

General-purpose obfuscation — probably not a good idea.

Renaming windowSize to sizeOfWindow — OK.

Renaming windowSize to x93 — not OK.

Replace a while-loop with a for-loop — OK.

Unroll the for-loop — not OK.

11 / 49

Algorithm
ssEFM

p. 631

AST-based clone detection

+
int +

+
+

var var var int

*

5

a b c

7

9

int

ssEFM: AST-based clone detection

Look for clones in this program:
¨ ¥

(5 + (a + b)) * (7 + (c + 9))
§ ¦

Parse and build an AST S :

+
int +

+
+

var var var int

*

5

a b c

7

9

int

13 / 49

An inefficient clone detector. . .

Construct all tree patterns .

14 / 49

An inefficient clone detector. . .

Construct all tree patterns .

A tree pattern is a subtree of S where one or more subtrees
have been replaced with a wildcard.

14 / 49

An inefficient clone detector. . .

Construct all tree patterns .

A tree pattern is a subtree of S where one or more subtrees
have been replaced with a wildcard.

14 / 49

An inefficient clone detector. . .

Construct all tree patterns .

A tree pattern is a subtree of S where one or more subtrees
have been replaced with a wildcard.

We’ll color the ASTs themselves blue and the tree patterns
pink.

14 / 49

Some of the tree patterns

?

*

?
?

+
+int

?
?
?

+
+

??
?

var
?

var
?

*
+

int +
+

int +
int
?

var
?

? ?

*
+
+

+
+?

? ?
?
? ?

*

????

+

+
int +

var var
? ?

5

var
?

+
int +

var var
? ?

?

+
int +

var
?

?
?

int
?

?

*
+
?

? +

15 / 49

What’s a clone in an AST?

What’s a clone in the context of an AST?

16 / 49

What’s a clone in an AST?

What’s a clone in the context of an AST?

Simply a tree pattern for which there’s more than one match!

16 / 49

What’s a clone in an AST?

What’s a clone in the context of an AST?

Simply a tree pattern for which there’s more than one match!

Which patterns would make a good clone?
1 has a large number of nodes
2 occurs a large number of times in the AST
3 has few holes

16 / 49

Which patterns would make good clones?

This pattern seems like it might make a good choice

+
int +

var
?

?
?

17 / 49

Which patterns would make good clones?

This pattern seems like it might make a good choice

+
int +

var
?

?
?

It matches two large subtrees of S :

+
int +

var var
5

a b

+
int +

var int
c

7

9

17 / 49

Extract clones!

Now you can extract the clones and turn them into macros:
¨ ¥

#define CLONE(x,y,z) ((x)+((y)+(z)))

CLONE(5,a,b) * CLONE(7,c,9)
§ ¦

18 / 49

A slow algorithm. . .

Build a clone table, a mapping from each pattern to the
locations in S where it occurs:

19 / 49

A slow algorithm. . .

Build a clone table, a mapping from each pattern to the
locations in S where it occurs:

Sort the table with largest patterns, most number of
occurrences, fewest number of holes first!

19 / 49

int +
var
?

?
?

+
int +

var int
c

7

9

int
?

int
5

int
7

+
int +

+
int +

var var var int

*

5

a b c

7

9

*
+
+

+
+?

? ?
?
? ?

var
?

var
a

var
c

var
b

??

+
+

int +
var int
c

7

9

+
int +

var var
5

a b

+
var int
c 9

+
var var

ba

+
int +

var var
5

a b

+

A heuristic algorithm. . .

Won’t scale: exponential number of tree patterns.

21 / 49

A heuristic algorithm. . .

Won’t scale: exponential number of tree patterns.

Idea: iteratively grow larger tree patterns from smaller ones.

21 / 49

A heuristic algorithm. . .

Won’t scale: exponential number of tree patterns.

Idea: iteratively grow larger tree patterns from smaller ones.

Step 1:

+
+

int +
var int
c

7

9

+
int +

var var
5

a b

+
var int
c 9

+
var var

ba
??

21 / 49

Step 2-3

We specialize, and the new pattern becomes larger (but only
has 2 matches):

+
int +

var int
c

7

9

+
int +

var var
5

a b

?

+

+

?

?

22 / 49

Step 2-3

We specialize, and the new pattern becomes larger (but only
has 2 matches):

+
int +

var int
c

7

9

+
int +

var var
5

a b

?

+

+

?

?

After two more steps of specialization, we’re done:

+
var int
c

7

9

+
int +

var var
5

a b

?

+

var
?

int
?

+
+

int

22 / 49

They found this clone 10 times over some Java classes:
¨ ¥

for(int i=0; i<?1; i++)

if (?2[i] != ?3[i])

return false;
§ ¦

The strength of the algorithm is that it allows structural
matching: holes can accept any subtree.

23 / 49

Graph-based

analysis
p. 635

Programs are graphs!

Control-flow graphs!

25 / 49

Programs are graphs!

Control-flow graphs!

Dependence graphs!

25 / 49

Programs are graphs!

Control-flow graphs!

Dependence graphs!

Inheritance graphs!

25 / 49

Programs are graphs!

Control-flow graphs!

Dependence graphs!

Inheritance graphs!

Can program similarity be computed over graph
representations of programs?

25 / 49

Unfortunately. . .

Sub-graph isomorphism is NP-complete.

26 / 49

Unfortunately. . .

Sub-graph isomorphism is NP-complete.

Fortunately, graphs computed from programs are not general
graphs.

26 / 49

Unfortunately. . .

Sub-graph isomorphism is NP-complete.

Fortunately, graphs computed from programs are not general
graphs.

Control-flow graphs will not be arbitrarily large.

26 / 49

Unfortunately. . .

Sub-graph isomorphism is NP-complete.

Fortunately, graphs computed from programs are not general
graphs.

Control-flow graphs will not be arbitrarily large.

Call-graphs tend to be very sparse.

26 / 49

Unfortunately. . .

Sub-graph isomorphism is NP-complete.

Fortunately, graphs computed from programs are not general
graphs.

Control-flow graphs will not be arbitrarily large.

Call-graphs tend to be very sparse.

Heuristics can be very effective in approximating subgraph
isomorphism.

26 / 49

Algorithm
ssKH

p. 636

PDG-based clone detection

S0

S2 S3

S8

S6S1

S5

S4

S7

ssKH: PDG-based clone detection

The nodes of a PDF are the statements of a function.

28 / 49

ssKH: PDG-based clone detection

The nodes of a PDF are the statements of a function.

There’s an edge m → n if
1 n is data-dependent on m, or
2 n is control-dependent on m.

28 / 49

ssKH: PDG-based clone detection

The nodes of a PDF are the statements of a function.

There’s an edge m → n if
1 n is data-dependent on m, or
2 n is control-dependent on m.

Semantics-preserving reordering of the statements of a
function won’t affect the graph.

28 / 49

Program Dependence Graph

S0 : int k = 0;

S1 : int s = 1;

S2 : while (k < w) {

S3 : if (x[k] == 1)

S4 : R = (s*y) % n;

else

S5 : R = s;

S6 : s = R*R % n;

S7 : L = R;

S8 : k=k+1;

}

29 / 49

Program Dependence Graph

S0

S2 S3

S8

S6S1

S5

S4

S7

30 / 49

ssKH: basic idea

Build a PDG for each function of the program

31 / 49

ssKH: basic idea

Build a PDG for each function of the program

Compute two isomorphic subraphs by slicing backwards along
dependency edges starting with every pair of matching nodes.

31 / 49

ssKH: basic idea

Build a PDG for each function of the program

Compute two isomorphic subraphs by slicing backwards along
dependency edges starting with every pair of matching nodes.

Two nodes are matching if they have the same syntactic
structure.

31 / 49

ssKH: basic idea

Build a PDG for each function of the program

Compute two isomorphic subraphs by slicing backwards along
dependency edges starting with every pair of matching nodes.

Two nodes are matching if they have the same syntactic
structure.

Repeat until no more nodes can be added to the slice.

31 / 49

A (contrived) example

¨ ¥

a1: a = g(8);

b1: b = z*3;

a2: while(a<10)

a3: a = f(a);

b2: while(b<20)

b3: b = f(b);

a4: if (a==10) {

a5: printf("foo\n");

a6: x=x+2;

}

b4: if (b==20) {

b5: printf("bar\n");

b6: y=y+2;

b7: printf("baz\n");

}
§ ¦

Two similar pieces of code have been intertwined within the
same function.

32 / 49

A (contrived) example

b4: if(b==20)

a5: printf("foo\n")

b3: b=f(b)a3: a=f(a)

b5: printf("bar\n")

a2: while(a<10)

b7: printf("baz\n")

a4: if(a==10)

a6: x=x+2

a1: a=g(8)

b6: y=y+2

b1: b=z*3

b2: while(b<20)

33 / 49

Algorithm: Step 1-3.

a4 and b4 match. Add them to the slice.

34 / 49

Algorithm: Step 1-3.

a4 and b4 match. Add them to the slice.

Consider a4 and b4’s predecessors, a3 and b3.

34 / 49

Algorithm: Step 1-3.

a4 and b4 match. Add them to the slice.

Consider a4 and b4’s predecessors, a3 and b3.

a3 and b3 match, too. Add them to the slice.

34 / 49

Algorithm: Step 1-3.

a4 and b4 match. Add them to the slice.

Consider a4 and b4’s predecessors, a3 and b3.

a3 and b3 match, too. Add them to the slice.

Add a2 and b2 to the slice since they match and are
predecessors of a3 and b3.

34 / 49

The PDF after Step 3

b4: if(b==20)

b7: printf("baz\n")b6: y=y+2

b5: printf("bar\n")

a3: a=f(a)

a5: printf("foo\n")

a2: while(a<10)

a4: if(a==10)

b3: b=f(b)

a1: a=g(8)

b2: while(b<20)

b1: b=z*3

a6: x=x+2

35 / 49

Algorithm: Step 4

a5/b5 and a6/b6 really should belong to the clone!

36 / 49

Algorithm: Step 4

a5/b5 and a6/b6 really should belong to the clone!

But, backwards slice won’t include them.

36 / 49

Algorithm: Step 4

a5/b5 and a6/b6 really should belong to the clone!

But, backwards slice won’t include them.

So, slice forward one step from any predicate in an if- and
while-statement.

36 / 49

The PDG after Step 4

b4: if(b==20)

a2: while(a<10) b2: while(b<20)

a3: a=f(a)

b6: y=y+2
b7: printf("baz\n")

b5: printf("bar\n")

a4: if(a==10)

a5: printf("foo\n")

a1: a=g(8)

a6: x=x+2

b1: b=z*3

b3: b=f(b)

37 / 49

The extracted clone

¨ ¥

#define CLONE(x,c,d,s,p,y)\

while(x<c) x = f(x);\

if (x==d){\

printf(s);\

y=y+2;\

p=1;}\

else p=0;

a = g(8);

b = z*3;

CLONE(a,10,10,"foo\n",p,x)

CLONE(b,20,20,"bar\n",p,y)

if (p) printf("baz\n");
§ ¦

38 / 49

Summary

This algorithm handles

clones where statements have been reordered,
clones that are non-contiguous,
and clones that have been intertwined with each other.

39 / 49

Summary

This algorithm handles

clones where statements have been reordered,
clones that are non-contiguous,
and clones that have been intertwined with each other.

Depressing performance numbers. A 11,540 line C program
takes 1 hour and 34 minutes to process.

39 / 49

Algorithm
ssLCHY

p. 640

PDG-based plagiarism detection

ssLCHY: PDG-based plagiarism detection

Uses PDGs, but for plagiarism detection.

41 / 49

ssLCHY: PDG-based plagiarism detection

Uses PDGs, but for plagiarism detection.

Uses a general-purpose subgraph isomorphism algorithm.

41 / 49

ssLCHY: PDG-based plagiarism detection

Uses PDGs, but for plagiarism detection.

Uses a general-purpose subgraph isomorphism algorithm.

Uses a preprocessing step to weed out unlikely plagiarism
candidates.

41 / 49

Plagiarised PDGs?

What does it mean for one PDG to be considered a
plagiarised version of another?

42 / 49

Plagiarised PDGs?

What does it mean for one PDG to be considered a
plagiarised version of another?

We expect some manner of obfuscation of the code —
equality is too strong!

42 / 49

Plagiarised PDGs?

What does it mean for one PDG to be considered a
plagiarised version of another?

We expect some manner of obfuscation of the code —
equality is too strong!

The two PDGs should be γ-isomorphic.

42 / 49

Plagiarised PDGs?

What does it mean for one PDG to be considered a
plagiarised version of another?

We expect some manner of obfuscation of the code —
equality is too strong!

The two PDGs should be γ-isomorphic.

Set γ = 0.9, (“overhauling (without errors) 10% of a PDG of
reasonable size is almost equivalent to rewriting the code.”)

42 / 49

Common Subgraphs

Definition

Common subgraphs Let G , G1, and G2 be graphs. G is a common
subgraph of G1 and G2 if there exists subgraph isomorphisms from
G to G1 and from G to G2.
G is the maximal common subgraph of two graphs G1 and G2

(G = mcs(G1, G2)) if G is a common subgraph of G1 and G2 and
there exists no other common subgraph G ′ of G1 and G2 that has
more nodes than G .

43 / 49

Common Subgraphs — Example

The colored nodes induce a maximal common subgraph of G1

and G2 of four nodes:

G1
G2

44 / 49

Graph similarity and containment

Definition

Graph similarity and containment Let |G | be the number of nodes
in G . The similarity(G1, G2) of G1 and G2 is defined as

similarity(G1, G2) =
|mcs(G1, G2)|

max(|G1|, |G2|)

The containment(G1, G2) of G1 within G2 is defined as

containment(G1, G2) =
|mcs(G1, G2)|

|G1|
.

We say that G1 is γ-isomorphic to G2 if

containment(G1, G2) ≥ γ, γ ∈ (0, 1].

45 / 49

Graph similarity and containment — Example

G1
G2

similarity(G1, G2) = 4
7 and

46 / 49

Graph similarity and containment — Example

G1
G2

similarity(G1, G2) = 4
7 and

containment(G1, G2) = 4
6 .

46 / 49

Filtering step

Subgraph isomorphism testing is expensive — prune out 9
10 of

all program pairs from consideration:
1 ignore any graph which has too few nodes to be interesting.

47 / 49

Filtering step

Subgraph isomorphism testing is expensive — prune out 9
10 of

all program pairs from consideration:
1 ignore any graph which has too few nodes to be interesting.
2 remove (g , g ′) from consideration if |g ′| < γ|g | (would never

pass a γ-isomorphism test).

47 / 49

Filtering step

Subgraph isomorphism testing is expensive — prune out 9
10 of

all program pairs from consideration:
1 ignore any graph which has too few nodes to be interesting.
2 remove (g , g ′) from consideration if |g ′| < γ|g | (would never

pass a γ-isomorphism test).
3 remove (g , g ′) if¿ the frequency of their different node types

are too different.

For example, if g consists solely of function call nodes and g ′

consists solely of nodes representing arithmetic operations, ⇒
unlikely related.

47 / 49

Summary

A PDG is not affected by
1 statement reordering,

48 / 49

Summary

A PDG is not affected by
1 statement reordering,
2 variable renaming,

48 / 49

Summary

A PDG is not affected by
1 statement reordering,
2 variable renaming,
3 replacing while-loops by for-loops,

48 / 49

Summary

A PDG is not affected by
1 statement reordering,
2 variable renaming,
3 replacing while-loops by for-loops,
4 flipping the order of branches in if-statements.

48 / 49

Summary

A PDG is not affected by
1 statement reordering,
2 variable renaming,
3 replacing while-loops by for-loops,
4 flipping the order of branches in if-statements.

The PDG is affected by
1 inlining and outlining

48 / 49

Summary

A PDG is not affected by
1 statement reordering,
2 variable renaming,
3 replacing while-loops by for-loops,
4 flipping the order of branches in if-statements.

The PDG is affected by
1 inlining and outlining
2 add bogus dependencies to introduce spurious edges

48 / 49

