Software Similarity
Analysis

© April 28, 2011 Christian Collberg

Clone detection

@ Duplicates are the result of copy-paste-modify programming.

Clone detection

@ Duplicates are the result of copy-paste-modify programming.

@ Problem during maintenance — all copies of bugs need to be
fixed.

Clone detection

@ Detection phase: locating similar pieces of code in a program.

P (f1,£3)
f1() =
£2() [::> f(r)
£3() f2()

Clone detection

@ Detection phase: locating similar pieces of code in a program.

@ Abstraction phase: clones are extracted out into functions.

P (f1,£3)
f1() =
£2() [::> f(r)
£3() f2()

Clone detection algorithm — Finding Clones

DETECT(P, threshold, minsize):

© Build a representation rep of P from which it is convenient to
find clone pairs. Collect code pairs that are sufficiently similar
and sufficiently large to warrent their own abstraction:

res «— ()

rep «+— convenient representation of P

for every pair of code segments f,g € rep,f #g do
if similarity(f,g) > threshold &&

size(f) > minsize && size(g) > minsize then
res — res U (f, g)

Clone detection algorithm — Replace Clones

DETECT(P, threshold, minsize):

@ Break out the code-pairs found in the previous step into their
own function and replace them with parameterized calls to this
function:

for every pair of code segments f,g € res do
h(r) < a parameterized version of f and g
P — PUAH(r)
replace f with a call to h(n) and g with h(r)

© Return res, P O

Attack model

@ We don’t expect programmers to be malicious!

Attack model

@ We don’t expect programmers to be malicious!

@ The code becomes naturally “obfuscated” because of the
specialization process.

Attack model

@ We don’t expect programmers to be malicious!

@ The code becomes naturally “obfuscated” because of the
specialization process.

@ The programmer renames variables and replace literals with
new values in the copied code.

Attack model

@ We don’t expect programmers to be malicious!

@ The code becomes naturally “obfuscated” because of the
specialization process.

@ The programmer renames variables and replace literals with
new values in the copied code.

@ More complex changes are unusual.

What has this to do with software protection?

@ Skype binary was protected by adding several hundred hash
functions.

What has this to do with software protection?

@ Skype binary was protected by adding several hundred hash
functions.

@ Could a clone dector have found them?

Plagiarism of programming assignments

@ Hand in a verbatim copy of a friend's program.

Plagiarism of programming assignments

@ Hand in a verbatim copy of a friend's program.

@ Or, make radical changes to the program to hide the origin of
the code.

Plagiarism of programming assignments

@ Hand in a verbatim copy of a friend's program.

@ Or, make radical changes to the program to hide the origin of
the code.

@ “Borrowing” one or more difficult functions from a friend.

Plagiarism of programming assignments

@ Hand in a verbatim copy of a friend's program.

@ Or, make radical changes to the program to hide the origin of
the code.

@ “Borrowing” one or more difficult functions from a friend.

@ Fishing code out of the trash can.

Plagiarism of programming assignments

(]

Hand in a verbatim copy of a friend’s program.

@ Or, make radical changes to the program to hide the origin of
the code.

“Borrowing" one or more difficult functions from a friend.

Fishing code out of the trash can.

(]

Nabbing code off the printer.

Plagiarism of programming assignments

(]

Hand in a verbatim copy of a friend’s program.

(]

Or, make radical changes to the program to hide the origin of
the code.

“Borrowing” one or more difficult functions from a friend.
Fishing code out of the trash can.

Nabbing code off the printer.

e © ¢ ¢

Outsource the assignments to an unscrupulous third party
(“programming-mills").

Plagiarism detection

@ Make pair-wise comparisons between all the programs handed
in by the students:

P1

P2

P3

{8

=70%
=20%
=10%

/49

Plagiarism detection — Algorithm

DETECT(U, threshold):

res — ()
for each pair of programs f,g do
sim+«— similarity(f,g)
if sim > threshold then
res «— res U (f, g, sim)
res < res sorted on similarity
return res

10 /49

Attack model

@ The student needs the code to look “reasonable.”

11/49

Attack model

@ The student needs the code to look “reasonable.”

@ General-purpose obfuscation — probably not a good idea.

11/49

Attack model

@ The student needs the code to look “reasonable.”
@ General-purpose obfuscation — probably not a good idea.

@ Renaming windowSize to sizeOfWindow — OK.

11/49

Attack model

@ The student needs the code to look “reasonable.”
@ General-purpose obfuscation — probably not a good idea.
@ Renaming windowSize to sizeOfWindow — OK.

@ Renaming windowSize to x93 — not OK.

11/49

Attack model

The student needs the code to look “reasonable.”
General-purpose obfuscation — probably not a good idea.
Renaming windowSize to size0fWindow — OK.

Renaming windowSize to x93 — not OK.

e © 6 ¢ ¢

Replace a while-loop with a for-loop — OK.

11/49

Attack model

The student needs the code to look “reasonable.”
General-purpose obfuscation — probably not a good idea.
Renaming windowSize to size0fWindow — OK.
Renaming windowSize to x93 — not OK.

Replace a while-loop with a for-loop — OK.

e © 6 ¢ ¢ ¢

Unroll the for-loop — not OK.

11/49

Algorithm
SSEEFM

p. 631

AST-based clone detection

*
/ \
s +
/\+ ~ N
in int
5l N 7 7\

var var var jnt
a b © 9

SSEFM: AST-based clone detection

Look for clones in this program:

[(5+(a+b))*(7+(0+9))J

Parse and build an AST S:

+/\+

‘/\+ '/\+

|Et/\ |9t/\
var var var jnt
a b c 9

13 /49

An inefficient clone detector. ..

@ Construct all tree patterns.

14 /49

An inefficient clone detector. ..

@ Construct all tree patterns.

@ A tree pattern is a subtree of S where one or more subtrees
have been replaced with a wildcard.

14 /49

An inefficient clone detector. ..

@ Construct all tree patterns.

@ A tree pattern is a subtree of S where one or more subtrees
have been replaced with a wildcard.

14 /49

An inefficient clone detector. ..

@ Construct all tree patterns.

@ A tree pattern is a subtree of S where one or more subtrees
have been replaced with a wildcard.

o We'll color the ASTs themselves blue and the tree patterns
pink.

14 /49

Some of the tree patterns

/+\ SN /*\ yd +\+
? N N ? ? PSRN
? ? ? 2 2 ? 2
g NG N .
+/ \+ 3 ,) ko) / \

15 /49

What's a clone in an AST?

@ What's a clone in the context of an AST?

16 /49

What's a clone in an AST?

@ What's a clone in the context of an AST?

@ Simply a tree pattern for which there's more than one match!

16 /49

What's a clone in an AST?

@ What's a clone in the context of an AST?

@ Simply a tree pattern for which there's more than one match!
@ Which patterns would make a good clone?

© has a large number of nodes
@ occurs a large number of times in the AST
© has few holes

16 /49

Which patterns would make good clones?

@ This pattern seems like it might make a good choice

17 /49

Which patterns would make good clones?

@ This pattern seems like it might make a good choice

@ It matches two large subtrees of S:

17 /49

Extract clones!

@ Now you can extract the clones and turn them into macros:

#define CLONE(x,y,z) ((x)+((y)+(=z)))
CLONE(5,a,b) * CLONE(7,c,9)

18 /49

A slow algorithm. . .

@ Build a clone table, a mapping from each pattern to the
locations in S where it occurs:

19 /49

A slow algorithm. . .

@ Build a clone table, a mapping from each pattern to the
locations in S where it occurs:

@ Sort the table with largest patterns, most number of
occurrences, fewest number of holes first!

19 /49

/g
¥
/ma
\m9
=
wc
mb
/>
\+ \mb
+ /ma =
\ew /5
s + /Wa o
\eo Ve
+ /..mc
>
e~
* \mb
£
+\ S
s
=)

*

_

a
b

a
a

—

A heuristic algorithm. . .

@ Won't scale: exponential number of tree patterns.

21 /49

A heuristic algorithm. . .

@ Won't scale: exponential number of tree patterns.

@ Idea: iteratively grow larger tree patterns from smaller ones.

21 /49

A heuristic algorithm. . .

@ Won't scale: exponential number of tree patterns.
@ Idea: iteratively grow larger tree patterns from smaller ones.
@ Step 1:

AN —

N
+ +
Igt /+ 4 \ TN
var int var var
var v%r ¢ 1 a Vb

21 /49

Step 2-3

@ We specialize, and the new pattern becomes larger (but only
has 2 matches):

22 /49

Step 2-3

@ We specialize, and the new pattern becomes larger (but only
has 2 matches):

A

e
T

22 /49

@ They found this clone 10 times over some Java classes:

for (int i=0; i<?y; i++)
if (?7[i] '= ?75[il)
return false;

@ The strength of the algorithm is that it allows structural
matching: holes can accept any subtree.

23 /49

Graph-based
analysis

p. 635

Programs are graphs!

@ Control-flow graphs!

25 /49

Programs are graphs!

@ Control-flow graphs!

@ Dependence graphs!

25 /49

Programs are graphs!

@ Control-flow graphs!
@ Dependence graphs!

@ Inheritance graphs!

25 /49

Programs are graphs!

@ Control-flow graphs!
@ Dependence graphs!
@ Inheritance graphs!

@ Can program similarity be computed over graph
representations of programs?

25 /49

Unfortunately. ..

@ Sub-graph isomorphism is NP-complete.

26 /49

Unfortunately. ..

@ Sub-graph isomorphism is NP-complete.

o Fortunately, graphs computed from programs are not general
graphs.

26 /49

Unfortunately. ..

@ Sub-graph isomorphism is NP-complete.

o Fortunately, graphs computed from programs are not general
graphs.

@ Control-flow graphs will not be arbitrarily large.

26 /49

Unfortunately. ..

@ Sub-graph isomorphism is NP-complete.

o Fortunately, graphs computed from programs are not general
graphs.

@ Control-flow graphs will not be arbitrarily large.

@ Call-graphs tend to be very sparse.

26 /49

Unfortunately. ..

Sub-graph isomorphism is NP-complete.

Fortunately, graphs computed from programs are not general
graphs.

@

Control-flow graphs will not be arbitrarily large.

(]

Call-graphs tend to be very sparse.

[

Heuristics can be very effective in approximating subgraph
isomorphism.

26 /49

Algorithm
SsKH

p. 636

PDG-based clone detection

a\@ @

v

sSSKH: PDG-based clone detection

@ The nodes of a PDF are the statements of a function.

28 /49

sSSKH: PDG-based clone detection

@ The nodes of a PDF are the statements of a function.
@ There's an edge m — n if

@ n is data-dependent on m, or
@ n is control-dependent on m.

28 /49

sSSKH: PDG-based clone detection

@ The nodes of a PDF are the statements of a function.
@ There's an edge m — n if

@ n is data-dependent on m, or
@ n is control-dependent on m.

@ Semantics-preserving reordering of the statements of a
function won't affect the graph.

28 /49

Program Dependence Graph

So: int k = 0;
S;: int s = 1;
S;: while (k < w) {

S3: if (x[k] == 1)
Ss R = (s*xy) % n;
else
Sy : R = s;
Se : s = R*R % n;
572 L = R;
Ss : k=k+1;
}

29 /49

Program Dependence Graph

PN
@ @

30/49

SSKH: basic idea

@ Build a PDG for each function of the program

31/49

SSKH: basic idea

@ Build a PDG for each function of the program

@ Compute two isomorphic subraphs by slicing backwards along
dependency edges starting with every pair of matching nodes.

31/49

SSKH: basic idea

@ Build a PDG for each function of the program

@ Compute two isomorphic subraphs by slicing backwards along
dependency edges starting with every pair of matching nodes.

@ Two nodes are matching if they have the same syntactic
structure.

31/49

SSKH: basic idea

@ Build a PDG for each function of the program

@ Compute two isomorphic subraphs by slicing backwards along
dependency edges starting with every pair of matching nodes.

@ Two nodes are matching if they have the same syntactic
structure.

@ Repeat until no more nodes can be added to the slice.

31/49

A (contrived) example

a: a = g(8);
bi: b = z*x3;
a: while(a<10)
a3: a = f(a);
b>: while (b<20)
bs: b = f(b);
az: if (a==10) {
as: printf ("fooln");
ap: X=x+2;

by: if (b==20) {
bs: printf ("bar\n");
bs: y=y+2;
b7: printf ("baz\n");

@ Two similar pieces of code have been intertwined within the

same function. ,
32/49

A (contrived) example

if (a==10) 40 if (b==20)

printf("bar\n")

33/49

Algorithm: Step 1-3.

® a4 and bs match. Add them to the slice.

34 /49

Algorithm: Step 1-3.

® a4 and bs match. Add them to the slice.

@ Consider a4 and by's predecessors, az and bs.

34 /49

Algorithm: Step 1-3.

® a4 and bs match. Add them to the slice.
@ Consider a4 and by's predecessors, az and bs.

@ a3z and bz match, too. Add them to the slice.

34 /49

Algorithm: Step 1-3.

® a4 and bs match. Add them to the slice.
@ Consider a4 and by's predecessors, az and bs.
@ a3z and bz match, too. Add them to the slice.

@ Add a and by to the slice since they match and are
predecessors of a3 and bs.

34 /49

The PDF after Step 3

if (a==10) s: if (b==20)

printf ("bar\n")

'.‘: “'_‘ 5 .
> b;: printf("baz\n")

35/49

Algorithm: Step 4

® as/bs and ag/be really should belong to the clone!

36 /49

Algorithm: Step 4

® as/bs and ag/be really should belong to the clone!

@ But, backwards slice won't include them.

36 /49

Algorithm: Step 4

® as/bs and ag/be really should belong to the clone!
@ But, backwards slice won't include them.

@ So, slice forward one step from any predicate in an if- and
while-statement.

36 /49

The PDG after Step 4

if (a==10) 40 if (b==20)

printf("bar\n")

37/49

The extracted clone

f#define CLONE(x,c,d,s,p,y)\\
while(x<c) x = £(x);\
if (x==d){\
printf (s);\
y=y+2;\
p=1;}\
else p=0;

a = g(8);

b = zx*3;
CLONE(a,10,10,"foo\n",p,x)
CLONE(b,20,20,"bar\n",p,y)
if (p) printf ("baz\n");

38/49

Summary

@ This algorithm handles

@ clones where statements have been reordered,
@ clones that are non-contiguous,
o and clones that have been intertwined with each other.

39 /49

Summary

@ This algorithm handles

@ clones where statements have been reordered,
@ clones that are non-contiguous,
o and clones that have been intertwined with each other.

@ Depressing performance numbers. A 11,540 line C program
takes 1 hour and 34 minutes to process.

39 /49

Algorithm
SSLCHY

p. 640

PDG-based plagiarism detection

SSLCHY: PDG-based plagiarism detection

@ Uses PDGs, but for plagiarism detection.

41/49

SSLCHY: PDG-based plagiarism detection

@ Uses PDGs, but for plagiarism detection.

@ Uses a general-purpose subgraph isomorphism algorithm.

41/49

SSLCHY: PDG-based plagiarism detection

@ Uses PDGs, but for plagiarism detection.
@ Uses a general-purpose subgraph isomorphism algorithm.

@ Uses a preprocessing step to weed out unlikely plagiarism
candidates.

41/49

Plagiarised PDGs?

@ What does it mean for one PDG to be considered a
plagiarised version of another?

42 /49

Plagiarised PDGs?

@ What does it mean for one PDG to be considered a
plagiarised version of another?

@ We expect some manner of obfuscation of the code —
equality is too strong!

42 /49

Plagiarised PDGs?

@ What does it mean for one PDG to be considered a
plagiarised version of another?

@ We expect some manner of obfuscation of the code —
equality is too strong!

@ The two PDGs should be y-isomorphic.

42 /49

Plagiarised PDGs?

@ What does it mean for one PDG to be considered a
plagiarised version of another?

@ We expect some manner of obfuscation of the code —
equality is too strong!
@ The two PDGs should be y-isomorphic.

@ Set v = 0.9, (“overhauling (without errors) 10% of a PDG of
reasonable size is almost equivalent to rewriting the code.”)

42 /49

Common Subgraphs

Definition

Common subgraphs Let G, Gy, and Gy be graphs. G is a common
subgraph of Gi and G, if there exists subgraph isomorphisms from
G to Gy and from G to Gp.

G is the maximal common subgraph of two graphs G; and G

(G = mes(Gy, Gp)) if G is a common subgraph of G; and Gy and

there exists no other common subgraph G’ of G; and G, that has

more nodes than G.

43 /49

Common Subgraphs — Example

@ The colored nodes induce a maximal common subgraph of G;
and Gy of four nodes:

Gy G:

OO0

44/ 49

Graph similarity and containment

Definition
Graph similarity and containment Let |G| be the number of nodes
in G. The similarity(Gi, Gp) of G; and G; is defined as

o . 5 G - G
similarity (G, G2) = %

The containment(Gy, Gp) of Gy within Gy is defined as

containment(Gy, Gy) = W
1

We say that G; is y-isomorphic to Gy if

containment(Gy, Gz2) > v,7v € (0,1].

45 /49

Graph similarity and containment — Example

G G;

o similarity(Gy, Gp) = % and

46 /49

Graph similarity and containment — Example

O

o similarity(Gy, Gp) = % and
4
6

@ containment(Gi, Gy) =

46 /49

Filtering step

@ Subgraph isomorphism testing is expensive — prune out % of

all program pairs from consideration:
© ignore any graph which has too few nodes to be interesting.

47 /49

Filtering step

@ Subgraph isomorphism testing is expensive — prune out % of

all program pairs from consideration:
© ignore any graph which has too few nodes to be interesting.
@ remove (g,g’) from consideration if |g’| < v|g| (would never
pass a y-isomorphism test).

47 /49

Filtering step

@ Subgraph isomorphism testing is expensive — prune out % of

all program pairs from consideration:

© ignore any graph which has too few nodes to be interesting.
@ remove (g,g’) from consideration if |g’| < v|g| (would never
pass a y-isomorphism test).
© remove (g, g’) ifi the frequency of their different node types
are too different.
@ For example, if g consists solely of function call nodes and g’
consists solely of nodes representing arithmetic operations, =
unlikely related.

47 /49

Summary

@ A PDG is not affected by
@ statement reordering,

48 /49

Summary

@ A PDG is not affected by

@ statement reordering,
@ variable renaming,

48 /49

Summary

@ A PDG is not affected by

@ statement reordering,
@ variable renaming,
© replacing while-loops by for-loops,

48 /49

Summary

@ A PDG is not affected by
@ statement reordering,
@ variable renaming,
© replacing while-loops by for-loops,
@ flipping the order of branches in if-statements.

48 /49

Summary

@ A PDG is not affected by

@ statement reordering,

@ variable renaming,

© replacing while-loops by for-loops,

@ flipping the order of branches in if-statements.
@ The PDG s affected by

© inlining and outlining

48 /49

Summary

@ A PDG is not affected by
@ statement reordering,
@ variable renaming,
© replacing while-loops by for-loops,
@ flipping the order of branches in if-statements.
@ The PDG s affected by
© inlining and outlining
@ add bogus dependencies to introduce spurious edges

48 /49

