My Title Here

This is me!

January 28, 2011

Plain slide

Itemized slide

- One
- Two
- Three

Enumerated slide

(1) One
(2) Two
(3) Three

Enumerated slide - Incrementally revealed

(1) One

Enumerated slide - Incrementally revealed

(1) One
(2) Two

Enumerated slide - Incrementally revealed

(1) One
(2) Two
(3) Three

Include postscript

Include code

$$
\begin{aligned}
& \text { if blah then } \\
& \text { boo } \\
& \text { else } \\
& \text { blurp } \\
& \text { endif }
\end{aligned}
$$

Include table

boo	yo dude, sweet, no, really	duh
boo	yo dude, sweet, no, really	duh
boo	yo dude, sweet, no, really	duh

Include URLs

Lear more about the Beamer class here:
http://www.ctan.org/tex-archive/macros/latex/contrib/beamer/doc/beameruserguide.pdf

Include theorem

The proof uses reductio ad absurdum.

Theorem

There is no largest prime number.

Proof.
(1) Suppose p were the largest prime number.
(4) Thus $q+1$ is also prime and greater than p.

Include theorem

The proof uses reductio ad absurdum.

Theorem

There is no largest prime number.

Proof.

(1) Suppose p were the largest prime number.
(2) Let q be the product of the first p numbers.
(4) Thus $q+1$ is also prime and greater than p.

Include theorem

The proof uses reductio ad absurdum.

Theorem

There is no largest prime number.

Proof.

(1) Suppose p were the largest prime number.
(2) Let q be the product of the first p numbers.
(3) Then $q+1$ is not divisible by any of them.
(4) Thus $q+1$ is also prime and greater than p.

Include theorem

I am curious, yellow.

Split into columns

One fish
Two fish
Red fish
Blue fish

