
Optimizing an ANSI C Interpreter with SuperoperatorsTodd A. Proebsting�University of ArizonaAbstractThis paper introduces superoperators, an opti-mization technique for bytecoded interpreters.Superoperators are virtual machine operationsautomatically synthesized from smaller opera-tions to avoid costly per-operation overheads.Superoperators decrease executable size and candouble or triple the speed of interpreted pro-grams. The paper describes a simple and e�ec-tive heuristic for inferring powerful superopera-tors from the usage patterns of simple operators.The paper describes the design and implemen-tation of a hybrid translator/interpreter that em-ploys superoperators. From a speci�cation of thesuperoperators (either automatically inferred ormanually chosen), the system builds an e�cientimplementation of the virtual machine in assem-bly language. The system is easily retargetableand currently runs on the MIPS R3000 and theSPARC.1 IntroductionCompilers typically translate source code intomachine language. Interpreter systems trans-late source into code for an underlying virtual�Address: Todd A. Proebsting, Department of Com-puter Science, University of Arizona, Tucson, AZ 85721.Internet: todd@cs.arizona.edu

machine (VM) and then interpret that code.The extra layer of indirection in an interpreterpresents time/space tradeo�s. Interpreted codeis usually slower than compiled code, but it canbe smaller if the virtual machine operations areproperly encoded.Interpreters are more
exible than compilers.A compiler writer cannot change the target ma-chine's instruction set, but an interpreter writercan customize the virtual machine. For instance,a virtual machine can be augmented with special-ized operations that will allow the interpreter toproduce smaller or faster code. Similarly, chang-ing the interpreter implementation to monitorprogram execution (e.g., for debugging or pro-�ling information) is usually easy.This paper will describe the design and imple-mentation of hti, a hybrid translator/interpretersystem for ANSI C that has been targeted toboth the MIPS R3000 [KH92], and the SPARC[Sun91]. hti will introduce superoperators, anovel optimization technique for customizing in-terpreted code for space and time. Superopera-tors automatically fold many atomic operationsinto a more e�cient compound operation in afashion similar to supercombinators in functionallanguage implementations [FH88]. Without su-peroperators hti executables are only 8-16 timesslower than unoptimized natively compiled code.Superoperators can lower this to a factor of 3-9.Furthermore, hti can generate program-speci�csuperoperators automatically.The hybrid translator, hti, compiles C func-tions into a tiny amount of assembly code forfunction prologue and interpreted bytecode in-structions for function bodies. The bytecodes

represent the operations of the interpreter's vir-tual machine. By mixing assembly code andbytecodes, hti maintains all native code callingconventions; hti object �les can be freely mixedwith compiled object �les.The interpreter is implemented in assemblylanguage for e�ciency. Both the translator, hti,and the interpreter are quickly retargeted with asmall machine speci�cation.2 Translator Outputhti uses lcc's front end to translate ANSI Cprograms into its intermediate representation(IR) [FH91b, FH91a]. lcc's IR consists of ex-pression trees over a simple 109-operator lan-guage. For example, the tree for 2+3 would beADDI(CNSTI,CNSTI), where ADDI represents in-teger addition (ADD+I), and the CNSTI's repre-sent integer constants. The actual values of theCNSTI's are IR node attributes.hti's virtual machine instructions are byte-codes (with any necessary immediate values).The interpreter uses an evaluation stack to eval-uate all expressions. In the simplest hti virtualmachines, there is a one-to-one correspondencebetween VM bytecodes and lcc IR operators(superoperators will change this). Translation isa left-to-right post�x emission of the bytecodes.Any necessary node attributes are emitted im-mediately after the corresponding bytecode. Forthis VM, the translation of 2+3 would be similarto the following:.byte 36 # CNSTI.word 2 # immediate value.byte 36 # CNSTI.word 3 # immediate value.byte 8 # ADDIThe interpreter implements operations via ajump-table indexed by bytecodes. The inter-preter reads the �rst CNSTI's bytecode (36), andjumps to CNSTI's implementation. CNSTI codereads the attribute value (2) and pushes it onthe stack. The interpreter similarly handles the\3." After reading the ADDI bytecode, the inter-preter pops two integers o� the evaluation stack,and pushes their sum.

The evaluation stack for each translated pro-cedure exists in its own activation record. Lo-cal stacks allow programs to behave correctlyin the presence of interprocedural jumps (e.g.,longjmp).hti produces an assembly �le. Most of the �leconsists of the bytecode translation of C func-tion bodies, and data declarations. hti does,however, produce a tiny amount of assemblylanguage for function prologues. Prologue codetells the interpreter how big the activation recordshould be, where within it to locate the evalua-tion stack, where to �nd the bytecode instruc-tions, and ultimately for transferring control tothe interpreter. A prologue on the R3000 lookslike the following:main:li $24, 192 # put activation# record size in $24li $8, 96 # put location of# evaluation stack in $8la $25, $$11 # put location of# bytecode in $25j _prologue_scalar # jump to interpreter(_prologue_scalar unloads scalar argumentsonto the stack | the R3000 calling conventionsrequire a few di�erent such prologue routines.Once the arguments are on the stack, the inter-preter is started.) Prologue code allows nativelycompiled procedures to call interpreted proce-dures without modi�cation.3 Superoperator OptimizationCompiler front ends, including lcc, producemany IR trees that are very similar in struc-ture. For instance, ADDP(INDIRP(x),CNSTI) isthe most common 3-node IR pattern producedby lcc when it compiles itself. (x is a place-holder for a subtree.) This pattern computes apointer value that is a constant o�set from thevalue pointed to by x (i.e., the l-value of x->b inC).With only simple VM operators, translatingADDP(INDIRP(x),CNSTI) requires emitting threebytecodes and the CNSTI's attribute. Interpret-ing those instructions requires

1. Reading the INDIRP bytecode, popping x'svalue o� the stack, fetching and pushing thereferenced value,2. Reading the CNSTI bytecode and attribute,and pushing the attribute,3. Reading the ADDP bytecode, popping the twojust-pushed values, computing and pushingtheir sum.If the pattern ADDP(INDIRP(x),CNSTI) werea single operation that takes a single operand, x,the interpreter avoids 2 bytecode reads, 2 pushes,and 2 pops. This new operator would have oneattribute | the value of the embedded CNSTI.These synthetic operators are called superopera-tors.Superoperators make interpreters faster byeliminating pushes, pops, and bytecode reads.Furthermore, superoperators decrease code sizeby eliminating bytecodes. The cost of a super-operator is an additional bytecode, and a cor-respondingly larger interpreter. Experiments inx8 show that carefully chosen superoperators re-sult in smaller and signi�cantly faster interpretedcode.3.1 Inferring SuperoperatorsSuperoperators can be designed to optimize theinterpreter over a wide range of C programs, orfor a speci�c program. The lcc IR includes only109 distinct operators, thus leaving 147 byte-codes for superoperators. Furthermore, if the in-terpreter is being built for a speci�c application,it may be possible to remove many operationsfrom the VM if they are never generated in thetranslation of the source program (e.g.,
oatingpoint operations), thereby allowing the creationof even more superoperators.The addition of superoperators increases thesize of the interpreter, but this can be o�setby the corresponding reduction of emitted byte-codes. Speci�c superoperators may optimize forspace or time. Unfortunately, choosing the opti-mal set of superoperators for space reduction isNP-complete | External Macro Data Compres-sion (SR22 [GJ79]) reduces to this problem. Sim-

ilarly, optimizing for execution time is equallycomplex.3.1.1 Inference Heuristichti includes a heuristic method for inferring agood set of superoperators. The heuristic readsa �le of IR trees, and then decides which ad-jacent IR nodes should be merged to form newsuperoperators. Each tree is weighted to guidethe heuristic. When optimizing for space, theweight is the number of times each tree is emit-ted by the front end of lcc. When optimizingfor time, the weight is each tree's (expected) ex-ecution frequency.A simple greedy heuristic creates superopera-tors. The heuristic exams all the input IR treesto isolate all pairs of adjacent (parent/child)nodes. Each pair's weight is the sum of theweights of the trees in which it appears. (If thesame pair appears N times in the same tree, thattree's weight is counted N times.) The pair withthe greatest cumulative weight becomes the su-peroperator formed by merging that pair. Thisnew superoperator then replaces all occurrencesof that pair in the input trees. For example, as-sume that the input trees with weights areI(A(Z,Y)) 10A(Y,Y) 1The original operators's frequencies of use areY 12Z 10I 10A 11The frequencies of the parent/child pairs areI(A(*)) 10A(Z,*) 10A(*,Y) 11A(Y,*) 1Therefore, A(*,Y) would become a new superop-erator, B. This new unary operator will replacethe occurrences of A(*,Y) in the subject trees.The resulting trees areI(B(Z)) 10B(Y) 1

The new frequencies of parent/child pairs areI(B(*)) 10B(Z) 10B(Y) 1Repeating the process, a new superoperatorwould be created for either I(B(*)) or B(Z).Ties are broken arbitrarily, so assume that B(Z)becomes the new leaf operator, C. Note that C issimply the composition of A(Z,Y). The rewrittentrees areI(C) 10B(Y) 1The frequencies for the bytecodes is nowY 1Z 0I 10A 0B 1C 10It is interesting to note that the B superoper-ator is used only once now despite being presentin 11 trees earlier. Underutilized superoperatorsinhibit the creation of subsequent superoperatorsby using up bytecodes and hiding constituentpieces from being incorporated into other su-peroperators. Unfortunately, attempting to takeadvantage of this observation by breaking apartpreviously created, but underutilized superoper-ators was complicated and ine�ective.Creating the superoperators B and C elimi-nated the last uses of the operators A and Z, re-spectively. The heuristic can take advantage ofthis by reusing those operators's bytecodes fornew superoperators. The process of synthesizingsuperoperators repeats until exhausting all 256bytecodes. The heuristic may, of course, mergesuperoperators together.The heuristic implementation requires only204 lines of Icon [GG90]. The heuristic can becon�gured to eliminate obsolete operators (i.e.,reuse their bytecodes), or not, as superoperatorsare created. Not eliminating obsolete operatorsallows the resulting translator to process all pro-grams, even though not speci�cally optimized forthem.

4 Translator Design4.1 Bytecode Emitterhti translates lcc's IR into bytecodes and at-tributes. Bytecodes can represent simple IR op-erators, or complex superoperator patterns. Theoptimal translation of an IR tree into bytecodesis automated via tree pattern matching usingburg [FHP92]. burg takes a cost-augmented setof tree patterns, and creates an e�cient patternmatcher that �nds the least-cost cover of a sub-ject tree. Patterns describe the actions associ-ated with bytecodes. Some sample patterns inthe burg speci�cation, interp.gr, follow:stk : ADDP(INDIRP(stk),CNSTI) = 5 (1) ;stk : ADDP(stk,stk) = 9 (1) ;stk : CNSTI = 36 (1) ;stk : INDIRP(stk) = 77 (1) ;The nonterminal stk represents a value that re-sides on the stack. The integers after the ='s arethe burg rule numbers, and, are also the actualbytecodes for each operation. Rule 9, for exam-ple, is a VM instruction that pops two valuesfrom the stack, adds them, and pushes the sumonto the stack. The (1)'s represent that eachpattern has been assigned a cost of 1. The pat-tern matcher would choose to use rule 5 (at cost1) over rules 9, 36, and 77 (at cost 3) wheneverpossible.The burg speci�cation for a given VM is gen-erated automatically from a list of superoperatorpatterns. To change the superoperators of a VM| and its associated translator and interpreter| one simply adds or deletes patterns from thislist and then re-builds hti. hti can be built withinferred, or hand-chosen superoperators.4.2 Attribute Emitterhti must emit node attributes after appropri-ate bytecodes. In the previous example, itis necessary to emit the integer attribute ofthe CNSTI node immediately after emitting thebytecodes for rules 5 or 36. This is sim-ple for single operators, but superoperators

may need to emit many attributes. The pat-tern ADDI(MULI(x,CNSTI),CNSTI) requires twoemitted attributes | one for each CNSTI.To build hti, a speci�cation associates at-tributes with IR operators. A preprocessorbuilds an attribute emitter for each superoper-ator. The attribute speci�cation for CNSTI isreg: CNSTI = (1)"emitsymbol(%P->syms[0]->x.name, 4, 4);"The pattern on the �rst line indicates that theinterpreter will compute the value of the CNSTIinto a register at cost 1. The second line indi-cates that the translator emits a 4-byte valuethat is 4-byte aligned. The preprocessor ex-pands %P to point to the CNSTI node relative tothe root of the superoperator in which it exists.%P->syms[0]->x.name is the emitted value. Forthe simple operator, stk: CNSTI, the attributeemitter executes the following call after emittingthe bytecodeemitsymbol(p->syms[0]->x.name, 4, 4);where p points to the CNSTI.For stk: ADDP(INDIRP(STK), CNSTI), the at-tribute emitter executesemitsymbol(p->kids[1]->syms[0]->x.name,4, 4);where p->kids[1] points to the CNSTI relativeto the root of the pattern, ADDP.A preprocessor creates a second burg spec-i�cation, mach.gr, from the emitter speci�ca-tion. The emitter speci�cation patterns form therules in mach.gr. The mach.gr-generated pat-tern matcher processes trees that represent theVM's superoperators. For every emitter patternthat matches in a superoperator tree, the asso-ciated emitter action must be included in thetranslator for that superoperator. This is doneautomatically from the emitter speci�cation andthe list of superoperator trees. (Single node VMoperators are always treated as degenerate su-peroperators.) Automating the process of trans-lating chosen superoperators to a new interpreteris key to practically exploiting superoperator op-timizations.

5 Interpreter GenerationThe interpreter is implemented in assembly lan-guage. Assembly language enables importantoptimizations like keeping the evaluation stackpointer and interpreter program counter in hard-ware registers. Much of the interpreter is auto-matically generated from a target machine spec-i�cation and the list of superoperators. The tar-get machine speci�cation maps IR nodes (or pat-terns of IR nodes) to assembly language. Forinstance, the mapping for ADDI on the R3000 isreg: ADDI(reg,reg) = (1)"addu %0r, %1r, %2r\n"This pattern indicates that integer addition(ADDI) can be computed into a register if theoperands are in registers. %0r, %1r, and %2r rep-resent the registers for the left-hand side non-terminal, the left-most right-hand side nonter-minal, and the next right-hand side nonterminal,respectively.The machine speci�cation augments the emit-ter speci�cation described above | they sharethe same patterns. Therefore, they can share thesame burg-generated pattern matcher. The pat-tern matcher processes superoperator trees to de-termine how to best translate each into machinecode. Below is a small speci�cation to illustratethe complete translation for an ADDI operator.reg: ADDI(reg,reg) = (1)"addu %0r, %1r, %2r\n"reg: STK = (1)"lw %0r, %P4-4($19)\n"stmt: reg = (0)"sw %0r, %U4($19)\n"STK is a terminal symbol representing a value onthe stack. The second rule is a pop from the eval-uation stack into a register. %P4 is a 4-byte pop,and $19 is the evaluation stack pointer register.The third rule is a push onto the evaluation stackfrom a register. %U4 is the 4-byte push.To generate the machine code for a sim-ple ADDI operation, the interpreter-generator re-duces the tree ADDI(STK,STK) to the nontermi-

nal stmt using the pattern matcher. The re-sulting code requires two instances of the secondrule, and one each of the �rst and third rules:lw $8, 0-4($19) # pop left operand# (reg: STK)lw $9, -4-4($19) # pop right operand# (reg: STK)addu $8, $8, $9 # add them# (reg: ADDI(reg,reg))sw $8, -8($19) # push the result# (stmt: reg)addu $19, -4 # adjust stackThe interpreter-generator automatically allo-cates registers $8 and $9 and, generates code toadjust the evaluation stack pointer.The interpreter-generator selects instructionsand allocates temporary registers for each super-operator. In essence, creating an interpreter istraditional code generation | except that it isdone for a static set of IR trees before any sourcecode is actually translated.The emitter and machine speci�cations use thesame patterns, so only one �le is actually main-tained. The juxtaposition of the emitter codeand machine code makes their relationship ex-plicit. Below is the complete R3000 speci�cationfor CNSTI.reg: CNSTI = (1)"addu $17, 7;srl $17, 2;sll $17, 2;lw %0r, -4($17)\n""emitsymbol(%P->syms[0]->x.name, 4, 4);"Register $17 is the interpreter's program counter(pc). The �rst three instructions advance the pcpast the 4-byte immediate data and round theaddress to a multiple of 4. (Because of assemblerand linker constraints on the R3000, all 4-bytedata must be word aligned.) The lw instructionloads the immediate value into a register.Machine/emitter speci�cations are not limitedto single-operator patterns. Complex IR treepatterns may better express the relationship be-tween target machine instructions and lcc's IR.For example, the R3000 lb instruction loads

and sign-extends a 1-byte value into a 4-byteregister. This corresponds to the IR pattern,CVCI(INDIRC(x)). The speci�cation for thiscomplex pattern follows.reg: CVCI(INDIRC(reg)) = (1)"lb %0r, 0(%1r)\n"""The interpreter-generator may use this rule forany superoperators that includeCVCI(INDIRC(x)).5.1 Additional IR OperatorTo reduce the size of bytecode attributes, oneadditional IR operator was added to lcc's orig-inal set: ADDRb. lcc's ADDRLP node representsthe o�set of a local variable relative to the framepointer. hti emits a 4-byte o�set attribute forADDRLP. ADDRLb is simply an abbreviated ver-sion of ADDRLP that requires only a 1-byte o�-set. Machine-independent back end code doesthis translation.6 Implementation DetailsBuilding an hti interpreter is a straightfor-ward process. The following pieces are neededto build hti's translator and interpreter:� A target machine/emitter speci�cation.� lcc back end code to handle data layout,calling conventions, etc.� A library of interpreter routines for observ-ing calling conventions.� Machine-dependent interpreter-generatorroutines.Figure 1 summarizes the sizes of the machinedependent and independent parts of the system(lcc's front end is excluded).The R3000-speci�c back end code and theinterpreter library are much bigger than theSPARC's because of the many irregular argu-ment passing conventions observed by C code onthe R3000.

Function Language Sizes (in lines)Machine Independent R3000 SPARCTarget Speci�cation grammar - 351 354lcc back end C 434 244 170interpreter library asm - 130 28interpreter generator C 204 72 70Figure 1: Implementation Details7 System ObstaclesUnfortunately, hti's executables are slower andbigger than they ought to be because of limi-tations of system software on both R3000 andSPARC systems. The limitations are not intrin-sic to the architectures or hti; they are just theresults of inadequate software.Neither machine's assembler supports un-aligned initialized data words or halfwords. Thiscan cause wasted space between a bytecode andits (aligned) immediate data. Consequently, theinterpreter must execute additional instructionsto round its pc up to a 4-byte multiple be-fore reading immediate 4-byte data. Initial testsindicate that approximately 17% of the bytesemitted by hti are wasted because of alignmentproblems.1The R3000 assembler restricts the ability toemit position-relative initialized data. For in-stance, the following is illegal on the R3000:L99: .word 55.word .-L99Position relative data would allow hti to im-plement pc-relative jumps and branches. Pc-relative jumps can use 2-byte immediate valuesrather than 4-byte absolute addresses, thus sav-ing space.8 Experimental Resultshti compiles C source into object code. Ob-1I understand that the latest release of the R3000 as-sembler and linker supports unaligned initialized data,and that the R3000 has instructions for reading unaligneddata. Unfortunately, I do not have access to these newtools.

ject code for each function consists of a native-code prologue, with interpreted bytecodes for thefunction body. Object �les are linked togetherwith appropriate C libraries (e.g., libc.a) andthe interpreter. The executable may be com-pared to natively compiled code for both sizeand speed. The code size includes the functionprologues, bytecodes, and one copy of the inter-preter. Interpreter comparisons will depend onavailable superoperators.Comparisons were made for three programs:� burg: A �5,000-line tree pattern matchergenerator, processing a 136-rule speci�ca-tion.� hti: The �13,000-line translator and sub-ject of this paper, translating a 1117-line C�le.� loop: An empty for loop that executes10,000,000 times.On the 33MHz R3000, hti is compared to aproduction quality lcc compiler. Because lcc'sSPARC code generator is not available, hti iscompared to acc, Sun's ANSI C compiler, onthe 33MHz Sun 4/490. Because lcc does littleglobal optimization, acc is also run without op-timizations. hti is run both with and withoutenabling the superoperator optimization. Super-operators are inferred based on a static count ofhow many times each tree is emitted from thefront end for that benchmark | hti+so repre-sents these tests. The columns labelled hti rep-resent the interpreter built with exactly one VMoperator for each IR operator.Figures 2 and 3 summarize the sizes of the codesegments for each benchmark. \code" is the to-tal of bytecodes, function prologues, and wasted

space. \waste" is the portion wasted due toalignment restrictions. \interp" is the size of theinterpreter. (The sizes do not include linked sys-tem library routines since all executables woulduse the same routines.)The interpreted executables are slightly largerthan the corresponding native code. The inter-preted executables are large for a few reasons be-sides the wasteful alignment restrictions alreadymentioned. First, no changes were made to thelcc's IR except the addition of ADDRb, and lcccreates wasteful IR nodes. For instance, lccproduces a CVPU node to convert a pointer toan unsigned integer, yet this a nop on both theR3000 and SPARC. Removing this node from IRtrees would reduce the number of emitted byte-codes. Additionally, lcc produces IR nodes thatrequire the same code sequences on most ma-chines, like pointer and integer addition. Dis-tinguishing these nodes hampers superoperatorinference, and superoperators save space. Unfor-tunately, much of the space taken up by executa-bles is for immediate values, not operator byte-codes. To reduce this space would require eitherencoding the sizes of the immediate data in newoperators (like ADDRb) or tagging the data withsize information, which would complicate fetch-ing the data.Fortunately, hti produces extremely fast in-terpreters. Figures 4 and 5 summarize the exe-cution times for each benchmark.lcc does much better than acc relative to in-terpretation because it does modest global reg-ister allocation, which acc and hti do not do.lcc's code is 28.2 times faster than the inter-preted code on loop because of register alloca-tion. Excluding the biased loop results, inter-preted code without superoperators is less than16 times slower than native code | sometimessigni�cantly. Furthermore, superoperators con-sistently increase the speed of the interpretedcode by 2-3 times.These results can be improved with more en-gineering and better software. Support for un-aligned data would make all immediate datareads faster. Inferring superoperators basedon pro�le information rather than static countswould make them have a greater e�ect on execu-

tion e�ciency.If space were not a consideration, the in-terpreter could be implemented in a directlythreaded fashion to decrease operator decodetime [Kli81]. The implementation of each VMoperator is unrelated to the encoding of the oper-ators, so changing from the current indirect tablelookup to threading would not be di�cult.9 Limitations and ExtensionsAlmost certainly, each additional superoperatorcontributes decreasing marginal returns. I madeno attempt to determine what the time and spacetradeo�s would be if the number of superopera-tors were limited to some threshold like 10 or20. I would conjecture that the returns for agiven application diminish very quickly and that20 superoperators realize the bulk of the poten-tial optimization. The valuable superoperatorsfor numerically intensive programs probably dif-fer from those for pointer intensive programs. Tocreate a single VM capable of executing manyclasses of programs e�ciently, the 147 additionalbytecodes could be partitioned into superopera-tors targeted to di�erent representative classes ofapplications.This system's e�ectiveness is limited by lcc'strees. The common C expression, x ? y, cannotbe expressed as a single tree by lcc. Therefore,hti cannot infer superoperators to optimize itsevaluation based on the IR trees generated bythe front end. Of course, any scheme based onlooking for common tree patterns will be limitedby the operators in the given intermediate lan-guage.hti generates bytecodes as .data assemblerdirectives and function prologues as assemblylanguage instructions. Nothing about the tech-niques described above is limited to such an im-plementation. The bytecodes could have beenemitted into a simple array that would be im-mediately interpreted, much like in a traditionalinterpreter. This would require an additionalbytecode to represent the prologue of a function| to mimic the currently executed assembly in-structions. To make this work, the system wouldhave to resolve references within the bytecode,

R3000 Code Size Summary (in bytes)Benchmark Translatorlcc hti hti+socode code interp waste code interp wasteburg 56576 92448 4564 15895 72616 12388 13862hti 230160 315040 4564 51868 289516 11296 64299loop 48 52 4564 4 44 600 6Figure 2: R3000 Benchmark Code SizesSPARC Code Size Summary (in bytes)Benchmark Translatoracc hti hti+socode code interp waste code interp wasteburg 75248 84720 4080 13560 63992 11840 10862hti 271736 292568 4080 41423 254808 10512 37507loop 80 56 4080 2 48 312 4Figure 3: SPARC Benchmark Code SizesR3000 Execution SummaryBenchmark Times (in seconds) Ratioslcc hti hti+so hti/lcc hti+so/lcc hti/hti+soburg 1.65 14.04 7.07 8.5 4.3 2.0hti 2.69 42.83 23.81 15.9 8.8 1.8loop 1.53 43.12 13.88 28.2 9.1 3.1Figure 4: R3000 Benchmark Code SpeedsSPARC Execution SummaryBenchmark Times (in seconds) Ratiosacc hti hti+so hti/acc hti+so/acc hti/hti+soburg 1.78 18.52 8.37 10.4 4.7 2.2hti 4.39 58.24 28.73 13.3 6.5 2.0loop 6.62 61.26 20.05 9.3 3.0 3.1Figure 5: SPARC Benchmark Code Speeds

which would require some additional machine-independent e�ort. (The system linker/loaderresolves references in the currently generated as-sembler.) Not emitting function prologues of ma-chine instructions would make seamless calls be-tween interpreted and compiled functions verytricky, however.10 Related WorkMany researchers have studied interpreters forhigh-level languages. Some were concerned withinterpretation e�ciency, and others with the di-agnostic capabilities of interpretation.Supercombinators optimize combinator-basedfunctional-language interpreters in a way sim-ilar to how superoperators optimize hti. Su-percombinators are combinators that encompassthe functionality of many smaller combinators[FH88]. By combining functionality into a sin-gle combinator, the number of combinators todescribe an expression is reduced and the num-ber of function applications necessary to evaluatean expression is decreased. This is analogous toreducing the number of bytecodes emitted andfetched through superoperator optimization.Pittman developed a hybrid interpreter andnative code system to balance the space/timetradeo� between the two techniques [Pit87]. Hissystem provided hooks for escaping interpretedcode to execute time-critical code in assemblylanguage. Programmers coded directly in bothinterpreted operations, or assembly.Davidson and Gresch developed a C inter-preter, Cint, that, like hti, maintained C call-ing conventions in order to link with native coderoutines [DG87]. Cint was written entirely in Cfor easy retargetability. Cint's VM is similar tohti's | it includes a small stack-based operatorset. On a set of small benchmarks the interpretedcode was 12.4-42.6 times slower than native codeon a VAX-11/780, and 20.9-42.5 times slower ona Sun-3/75. Executable sizes were not compared.Kaufer, et. al., developed a diagnostic C inter-preter environment, Saber-C, that performs ap-proximately 70 run-time error checks [KLP88].Saber-C's interpreted code is roughly 200 timesslower than native code, which the authors at-

tribute to the run-time checks. The interpreterimplements a stack-based machine, and main-tains calling conventions between native and in-terpreted code. Unlike hti interpreted functionshave two entry points: one for being called fromother interpreted functions, and another for na-tive calls, with a machine-code prologue.Similarly, Feuer developed a diagnostic C in-terpreter, si, for debugging and diagnostic out-put [Feu85]. si's primary design goals were quicktranslation and
exible diagnostics | time andspace e�ciency were not reported.Klint compares three ways to encode a pro-gram for interpretation [Kli81]. The methodsare \Classical," \Direct Threaded" [Bel73], and\Indirect Threaded." Classical | employed byhti and Cint | encodes operators as valuessuch that address of the corresponding inter-preter code must be looked up in a table. DirectThreaded encodes operations with the addressesof the corresponding interpreter code. IndirectThreaded encodes operations with pointers tolocations that hold the actual code addresses.Klint concludes that the Classical method givesthe greatest compaction because it is possible touse bytes to encode values (or even to use Hu�-mann encoding) to save space. However, theClassical method requires more time for the tablelookup.11 Discussionhti translates ANSI C into tight, e�cient codethat includes a small amount of native code withinterpreted code. This hybrid approach allowsthe object �les to maintain all C calling con-ventions so that they may be freely mixed withnatively compiled object �les. The interpretedobject code is approximately the same size asequivalent native code, and runs only 3-16 timesslower.Much of the interpreter's speed comes frombeing implemented in assembly language. Re-targeting the interpreter is simpli�ed usingcompiler-writing tools like burg and special-purpose machine speci�cations. For the MIPSR3000 and the SPARC, each machine requiredfewer than 800 lines of machine-speci�c code to

be retargeted.Superoperators, which are VM operations thatrepresent the aggregate functioning of many con-nected simple operators, make the interpretedcode both smaller and faster. Tests indicate su-peroperators can double or triple the speed of in-terpreted code. Once speci�ed by the interpreterdeveloper, new superoperators are automaticallyincorporated into both the translator and the in-terpreter. Furthermore, heuristics can automati-cally isolate bene�cial superoperators from staticor dynamic feedback information for a speci�cprogram or for an entire suite of programs.12 AcknowledgementsChris Fraser provided useful input on this work.References[Bel73] James R. Bell. Threaded code. Com-munications of the ACM, 16(6):370{372, June 1973.[DG87] J. W. Davidson and J. V. Gresch. Cint:A RISC interpreter for the C pro-gramming language. In Proceedings ofthe SIGPLAN '87 Symposium on In-terpreters and Interpretive Techniques,pages 189{198, June 1987.[Feu85] Alan R. Feuer. si | an interpreterfor the C language. In Proceedings ofthe 1985 Usenix Summer Conference,Portland, OR, June 1985.[FH88] Anthony J. Field and Peter G. Harri-son. Functional Programming. AddisonWesley, 1988.[FH91a] Christopher W. Fraser and David R.Hanson. A code generation interfacefor ANSI C. Software|Practice andExperience, 21(9):963{988, September1991.[FH91b] Christopher W. Fraser and David R.Hanson. A retargetable compiler forANSI C. SIGPLAN Notices, 26(10),October 1991.

[FHP92] Christopher W. Fraser, Robert R.Henry, and Todd A. Proebsting.BURG | fast optimal instruction se-lection and tree parsing. SIGPLANNotices, 27(4):68{76, April 1992.[GG90] Ralph E. Griswold and Madge T. Gris-wold. The Icon Programming Lan-guage. Prentice Hall, 1990.[GJ79] M. R. Garey and D. S. Johnson. Com-puters and Intractability: A Guide tothe Theory of NP-Completeness. W.H. Freeman and Company, 1979.[KH92] Gerry Kane and Joe Heinrich. MIPSRISC Architecture. Prentice Hall, 1992.[Kli81] Paul Klint. Interpretation tech-niques. Software|Practice and Expe-rience, 11(10):963{973, October 1981.[KLP88] Stephen Kaufer, Russell Lopez, and Se-sha Pratap. Saber-C: An interpreter-based programming environment forthe C language. In Proceedings of the1988 Usenix Summer Conference, SanFrancisco, CA, June 1988.[Pit87] T. Pittman. Two-level hybrid inter-preter/native code execution for com-bined space-time program e�ciency. InProceedings of the SIGPLAN '87 Sym-posium on Interpreters and Interpre-tive Techniques, pages 150{152, June1987.[Sun91] Sun Microsystems, Inc. The SPARCArchitecture Manual (Version 8), 1991.

