
Myths and Realities:
The Performance Impact of Garbage Collection

Presented by: Tapasya Patki

February 17, 2011



Authors



Motivation: Cost-Benefit Analysis



Motivation: To GC or not to GC

Explicit Memory Management or Garbage Collection?

Can GC ever improve application performance?

Whole-heap collection or Generational collection?



Motivation: Some more questions

Sensitivity to Heap Size

Frequency of collection

Cost of collection: Whole-heap or Nursery?

Space tradeoff: SemiSpace or Mark-Sweep?

Locality: L1, L2, TLB misses

Influence of processor architecture on GC



Background: Allocation Strategies

Contiguous

append new object by incrementing
a bump pointer
speed of allocation, locality

Free-list

k size-segregated lists (binning)
allocate new object in smallest size
class
internal fragmentation, faster
compaction



Background: Collection Strategies

Tracing

transitive closure: roots ∪ remembered-set

reclaim by copying live objects

Reference Counting

count number of references
reclaim objects with no references



Background: Whole-heap GC Algorithms

Algorithm Allocator Collector

SemiSpace Contiguous Tracing

MarkSweep Free-list Tracing

RefCount Free-list Reference Counting



Background: Generational GC Algorithms

Algorithm Nursery Mature

GenSS SemiSpace SemiSpace

GenMS SemiSpace MarkSweep

GenRC SemiSpace RefCount

write-barrier: to record pointers from mature-space to nursery

size of nursery

compaction of nursery survivors



Methodology

MMTk in IBM Jikes RVM

Java-in-Java design
pseudo-adaptive compilation using application profiles
(deterministic)
immortal space for itself (compiler, classloader, collector)

Arch CPU Freq RAM L1 L2

Athlon 1.9Ghz 1GB 64K both 512K

P4 2.6GHz 1GB 8K D, 12K I 512K

PPC 1.6GHz 768MB 32K D, 64K I 512K



Benchmarks

Mutator Phase: application code, contains allocation
sequence and write-barriers

GC Phase

SPEC JVM benchmarks



Results: javac



Results: Generational vs Whole-heap (Rough Sketch)



Results: Write Barrier



Results: Nursery Size Trend for GenCopy and GenMS

(Rough Sketch)



Results: Architecture Influences

Architecture Influences

Crossover point: When SemiSpace outperforms MarkSweep
Limited space versus Locality tradeoff



Results: Architecture Influences, PPC 1.6GHz



Results: Architecture Influences, Athlon 1.9GHz



Results: Architecture Influences, P4 2.6 GHz



Myths and Realities

Contiguous is better than Free-list

Allocation is 11% faster, total improvement 1%
Locality improves mutator performance by 5-15% (SS vs MS)

Tracing is usually better than Reference Counting

Only live objects are touched
Locality improves
RC can be useful for mature objects, when most of the heap
consists of live objects

Sensitivity to Heap Size

Determines collection frequency
Small heaps: MarkSweep, Modest to large heaps: SemiSpace



Myths and Realities

Generational better than Whole-heap

Write-barrier over head is 1-14%, 3.2% average
Collection time benefits outweigh the write-barrier overhead
Locality of nursery: spatial
Locality of mature objects: temporal

Nursery size

Fixed overhead of scanning roots (about 64KB)
Need not be matched to L2 cache size (512KB)
Should depend on fixed overhead (4-8MB)
If large, collection cost degrades performance (>8MB)



Impact on the GC Research Community

Compare generational GC with explicit memory management

GC is competitive with explicit memory management
5x memory, outperforms
3x memory, 17% slower on average

GC can do slightly better than explicit memory management
in large heaps



Some more references

www.cs.utexas.edu/users/mckinley/395Tmm/talks/May-4-MMTk.ppt

M Hertz and E Berger, Quantifying the Performance of
Garbage Collection vs. Explicit Memory Management,
OOPSLA’05

www.cs.utexas.edu/users/mckinley/395Tmm/talks/May-4-MMTk.ppt

