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codea; in particular, VM code consists of a sequence of VM instructions. Insuch designs the interpretive system is divided into a front end, i.e., a compilerthat produces VM code, and a VM interpreter that executes this code. Theadvantages of this approach are e�ciency (the VM is usually designed to beinterpreted with minimal interpreter overhead), and a clean interface betweenmodules of the interpretive system. Well-known examples of virtual machinesare Java's JVM [LY99], Prolog's WAM [AK91], and Smalltalk's VM [GR83].Virtual machines are often designed as stack architectures, for two reasons:1) It is easy to generate stack-based code from most languages; 2) stack-basedVM instructions require less decoding overhead than register-based VM instruc-tions and therefore execute faster [Ert95].1.1 AutomationWhen creating a VM interpreter, there are many repetitive pieces of code: Thecode for executing one VM instruction has similarities with code for executingother VM instructions (get arguments, store results, dispatch next instruction);likewise for VM disassembly and VM code generation. Moreover, the code fordealing with one VM instruction is distributed across several places: VM inter-preter engine, VM disassembler, and VM code generation support functions. Ifyou want to change or add a VM instruction, typically all of these places haveto be updated. These issues suggest generating the code for processing VMinstructions from a common VM instruction description.In this paper we present such a generator: vmgen. From a single, simple VMinstruction description �le (Section 3) it generates C code for:� Executing the instruction (with operand access, debugging support, andinstruction dispatch generated automatically; see Section 4.1{4.3).� Routines for generating VM code (to be used in the front end of theinterpretive system; see Section 4.5).� Disassembling the VM code (useful in debugging the front end; see Sec-tion 4.6).� Pro�ling VM instruction sequences (Section 4.7).� Combining instructions into superinstructions (Section 4.8).Vmgen has special support for stack-based VMs. It has no special supportfor register-based VMs, but most of its features are also useful when working onsuch VMs; only stack operand access generation and stack access optimizationsare useless for register VMs.1.2 E�ciencyIn addition to reducing the work of writing and maintaining an interpreter,vmgen makes it easy to write fast interpreters by supporting e�cient implemen-tation techniques and a number of optimizations.aThis is the usual meaning of virtual machine in interpreter construction (�rst item inhttp://foldoc.doc.ic.ac.uk/foldoc/foldoc.cgi?virtual+machine).2
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...GNU C Alpha assemblynext_inst = *ip; ldq s2,0(s1) ;load next VM instructionip++; addq s1,0x8,s1 ;increment VM instruction pointergoto *next_inst; jmp (s2) ;jump to next VM instructionFigure 1: Threaded code: VM code representation and instruction dispatchSome might argue that e�ciency is not important in interpreters becausethey are slow anyway. However, this attitude can lead to an interpreter that ismore than a factor of 1000 slower than native code produced by an optimizingcompiler [RLV+96], whereas the slowdown for e�cient interpreters is only afactor of 10 [HATvdW99]. That is, the di�erence between a slow and a fastinterpreter is larger than the di�erence between a fast interpreter and nativecode.Another argument is that interpreted programs spend much of their time innative-code libraries, so speeding up the interpretive engine will not provide aspeedup to these programs. However, the amount of time spent in libraries isnot necessarily known at the start of a project, and the prospect of a > 1000slowdown (if the library does not cover everything and a signi�cant amount ofcomputation has to be performed using simple operations) is daunting. More-over, having an e�cient interpreter increases the number of applications wherethe library dominates run-time. For example, consider an application that wouldspend 99% of its time in libraries when compiled with an optimizing native codecompiler: with an e�cient interpreter it will spend 90% of the time in the li-brary (for an overall slowdown of 1.1 over optimized native code), whereas withan ine�cient interpreter it will spend less than 10% of its time in the library(for an overall slowdown of > 10).Vmgen supports the following techniques and optimizations for writing e�-cient interpreters:� Threaded code (Section 1.3).� Scheduling the dispatch of the next VM instruction (Section 5.1).� Keeping the top-of-stack in a register (Section 5.2).� Combining VM instructions into superinstructions (Section 4.3 and 4.8).� Eliminating stores of unchanged stack items (Section 5.3).� Improving branch prediction accuracy (Section 5.4).
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1.3 Threaded codeThreaded code [Bel73] represents a VM instruction as address of the routinethat implements the instruction. In threaded code the code for dispatching thenext instruction consists of fetching the VM instruction, jumping to the fetchedaddress, and incrementing the instruction pointer. This technique cannot beimplemented in ANSI C, but it can be implemented in GNU C using the labels-as-values extension. Figure 1 shows threaded code and the instruction dispatchsequence.Another popular technique for implementing VM interpreters represents aVM instruction as an integer (often byte-sized) and uses a C switch statementfor dispatch.The advantages of threaded code over switch dispatch are a short, fast in-struction dispatch sequence and better branch prediction accuracy on machineswith branch target bu�ers [EG01]. A disadvantage of threaded code comparedwith bytecode is the larger VM code size.2 Vmgen overviewFigure 2 shows how the source �les for a vmgen-based interpreter are compiled,and the generated �les involved. The input to vmgen is a .vmg �le that con-tains type and stack de�nitions and instruction speci�cations (see Section 3 fordetails). Vmgen outputs six �les containing C code; most of these �les must be#included in a wrapper C functionb.Vmgen comes with an example, and the example's wrapper �les can usuallybe used with few changes; the exception to this rule is compiler.c, whichcontains the front-end of the interpretive system and therefore is quite di�erentfor di�erent languages.If the interpreter is compiled with VM pro�ling enabled, running the inter-preter produces a VM pro�le in addition to the usual results; this VM pro�leis useful for selecting which VM instruction sequences should be combined intosuperinstructions.3 InputFigure 3 shows a simpli�ed grammar for vmgen's input language. Figure 4shows a complete (but not very useful) vmgen-style virtual machine speci�cation,explained in the following.3.1 Simple instruction speci�cationsA typical example for a simple instruction description is the JVM instructioniadd:iadd ( i1 i2 -- i )i = i1+i2;bWe use the extension .i (for include), because the commonly used extension .h (forheader) indicates declarations and macro de�nitions.4
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wrapper generated�le descriptionx.vmg input: VM description (Section 3)engine.c x-vm.i VM instruction execution (Section 4.1{4.3)engine.c x-labels.i VM instruction address array (Section 4.4)disasm.c x-disasm.i VM code disassembler (Section 4.6)compiler.c x-gen.i VM code generation (Section 4.5)pro�le.c x-pro�le.c VM instruction sequence pro�ling (Section 4.7)peephole.c x-peephole.c superinstruction tables (Section 4.8)Figure 2: Files and processing steps in interpreter generationVmgen extracts a lot of information from the �rst line of the instructionspeci�cation, and generates a lot of code from it, whereas the C-code part isjust used almost verbatim in one of the generated �les.In particular, the parenthesized part in the �rst line (the stack e�ect) con-tains a lot of information: the number of items popped from and pushed on thestacks, their order, their stack, their type, and by what name they are referredto in the C code. In our example, iadd pops the two integers i1 and i2 fromthe data stack, executes the C code, and then pushes the integer i on the datastack.The stack e�ect is responsible for a lot of generated code: for declaringC variables for the stack items, for accessing the arguments and results, for5



description -> {simple_inst|super_inst|comment|escape}simple_inst -> inst_id ' (' stack_effect ')' newlineC_code newline newlinestack_effect -> {item_id} '--' {item_id}super_inst -> inst_id ' =' {inst_id} newlinecomment -> '\ ' comment_string newlineescape -> '\E ' (stack_def|stack_prefix|type_prefix) newlinestack_def -> 'stack' stack_id pointer_id c_type_idstack_prefix -> stack_id 'stack-prefix' prefix_idtype_prefix -> 's" ' type_string '"' ('single'|'double') stack_id'type-prefix' prefix_idFigure 3: Simpli�ed EBNF grammar for vmgen input\ stack definitions:\E stack data-stack sp Cell\ stack prefix definitions:\E inst-stream stack-prefix #\ type prefix definitions:\E s" int" single data-stack type-prefix i\ simple instruction definitions:iadd ( i1 i2 -- i )i = i1+i2;ipush ( #i -- i )\ superinstruction definitions:ipush_iadd = ipush iaddFigure 4: A simple virtual machine speci�cationoutputting the arguments and results in traces, and for dealing with immediatearguments in VM code generation and disassembly.3.2 Special macrosThe user-supplied C code can contain a few macros with special meaning tovmgen.SET IP This macro sets the VM instruction pointer. It is used for implementingVM branches. It also indicates the end of a VM-code basic block forpro�ling.SUPER END Use this for ending a basic block in an instruction without SET IP(for pro�ling, see Section 4.7). For example, our JVM implementationuses SUPER END in VM instructions that return from the engine.6



TAIL This macro indicates that the execution of the current VM instructionends and the next one should be invoked. Using this macro is only nec-essary if you want to do this in the middle of the user-supplied C code;vmgen automatically appends this code at the end without needing TAILthere. Vmgen itself expands TAIL.As an example of the use of these macros, consider a conditional branch:ifeq ( #aTarget i -- )if ( i == 0 ) {SET_IP(aTarget); TAIL;} The # pre�x indicates an immediate argument (see Section 3.4). To improvebranch prediction accuracy, we use TAIL here instead of falling through to theend (see Section 5.4).3.3 TypesThe type of a stack item is speci�ed through its pre�x, like in Hungarian notationor Fortran. In our example, all stack items have the pre�x i that indicates a32-bit integer. The types and their pre�xes are speci�ed at the start of the .vmg�le, like this:\E s" int" single data-stack type-prefix iThe s" int" indicates the C type of the pre�x (int), single indicates thatthis type takes only one slot on the stack (currently vmgen supports types takingone or two slots), data-stack is the default stack for stack items of that type(see Section 3.4), and i is the name of the pre�x. If there are several matchingpre�xes, the longest one is used.3.4 StacksVmgen supports virtual machines with several stacks. It also treats the instruc-tion stream like a stack in some respects; this approach is a convenient wayto automate the treatment of immediate arguments. Accesses to a non-defaultstack are speci�ed by a pre�x that is not part of the name of the argument.For example, consider the code for the VM instruction ipushc that pushes aconstant on the stack:ipush ( #i -- i )Here # is the pre�x for the instruction streamd. ipush just takes the value ifrom the instruction stream and pushes it on the stack.You de�ne a stack like this:\E stack data-stack sp CellcA generalization of the JVM instructions bipush and sipush.dinspired by the 6800/6502/68000 immediate addressing mode syntax7



data-stack is the name of the stack (pre�x de�nitions refer to that name),sp is the name of the stack pointer, Cell is the C type of a generic stack item(i.e., the type that the stack pointer points to). The instruction stream workssomewhat di�erently from the other stacks and is therefore prede�ned (stackpointer IP, type Cell).You de�ne a stack pre�x like this:\E inst-stream stack-prefix #inst-stream is the name of the stack (this stack is prede�ned), and # is itspre�x.The conversion between the generic stack item type and the type of a par-ticular stack item is performed by conversion macros when accessing the stackitem (see Section 4.1).3.5 SuperinstructionsA superinstruction performs the work of a sequence of simple instructions. It isde�ned like this:ipush_iadd = ipush iaddipush iadd is the name of the superinstruction, ipush and iadd are thenames of the component instructions; there can be arbitrarily many components.3.6 Virtual register machinesThere are two ways to use vmgen for de�ning a register VM:The direct way is to de�ne instructions that take register numbers as imme-diate arguments and do not use stacks at all:add ( #isrc1 #isrc2 #idest -- )reg[idest] = reg[isrc1] + reg[isrc2];The indirect way is to de�ne a hybrid stack/register VM where the onlyregister accesses are transfers between the registers and the stacks; full registerinstructions are de�ned as superinstructions:load ( #isrc -- i )i = reg[isrc];store ( i #idest -- )reg[idest] = i;add = load load iadd storeThe advantages of the indirect approach are that vmgen's tracing featureproduces more useful output (it reports the values loaded from and stored toregisters), and that it is easier to deal with instructions specialized for hard-coded registers (e.g., load r1).Of course, once you are using a hybrid stack/register VM, you might chooseto use the stack instead of registers for short-lived intermediate results, and usepro�ling to decide which sequences should become superinstructions, resultingin a best-of-both-worlds VM. 8



I_iadd: { /* label */int i1; /* declarations of stack items */int i2;int i;NEXT_P0; /* dispatch next instruction (part 0) */i1 = vm_Cell2i(sp[1]); /* fetch argument stack items */i2 = vm_Cell2i(spTOS);sp += 1; /* stack pointer updates */{ /* user-provided C code */#line 6 "mini.vmg"i = i1+i2;}NEXT_P1; /* dispatch next instruction (part 1) */spTOS = vm_i2Cell(i); /* store result stack item(s) */NEXT_P2; /* dispatch next instruction (part 2) */}Figure 5: Simpli�ed version of the code generated for the iadd VM instructionin the *-vm.i �le (see text for a description)4 Output4.1 Interpreter engineFigure 5 shows a simpli�ed and commented version of the *-vm.i output thatvmgen generates for the iadd VM instruction. It starts with the label of the VMinstruction. Then the stack items used by the instruction are declared. NEXT P0,NEXT P1, and NEXT P2 are macros for the instruction dispatch sequence. Theassignments following NEXT P0 are the stack accesses for the arguments of theVM instruction. Then the stack pointer is updated (the stacks grow towardslower addresses). The next piece of code is the C code from the instructionspeci�cation. After that, apart from the dispatch code there is only the stackaccess for the result of the instruction.The stack accesses to the top-of-stack use spTOS instead of sp[0] to enabletop-of-stack caching (see Section 5.2).vm Cell2i and vm i2Cell are macros for changing the type of the stackitem from the generic type to the type of the actual stack item; they have tobe de�ned in the C program that #includes this *-vm.i �le; we have de�nedCell to be an integer type and have used casts for most of these macros (analternative would be to de�ne Cell as a union).This C code looks long and ine�cient (and the complete version is evenlonger), but GCC optimizes it quite well and produces the optimal code shownin Fig. 6 on the Alpha architecture. It also produces optimal code for iadd formost architectures we looked at.4.2 DebuggingA typical C debugger is not very well suited for debugging an interpreter becausethe C debugger works at a too-low level and does not know anything about the9



ldl t0,8(s3) ;i1 = vm_Cell2i(sp[1]);ldq s2,0(s1) ;load next VM instructionaddq s3,0x8,s3 ;sp += 1;addq s1,0x8,s1 ;increment VM instruction pointeraddl t0,s4,s4 ;i = i1+i2;jmp (s2) ;jump to next VM instructionFigure 6: Alpha code produced for iaddI_iadd:NAME("iadd") /* print VM inst. name and some VM registers */... /* fetch stack items */#ifdef VM_DEBUGif (vm_debug) {fputs(" i1=", vm_out); printarg_i(i1); /* print arguments */fputs(" i2=", vm_out); printarg_i(i2);}#endif... /* user-provided C code */#ifdef VM_DEBUGif (vm_debug) {fputs(" -- ", vm_out); /* print result(s) */fputs(" i=", vm_out); printarg_i(i);fputc('\n', vm_out);}#endif... /* store stack items; dispatch */Figure 7: Tracing code generated for the iadd VM instruction in the *-vm.i�le (see text for a description)interpreted program; e.g., stepping through the interpreter is tedious, and the Cdebugger does not o�er support for stepping through the interpreted program.Vmgen supports debugging at the VM level in two ways: through a VMdisassembler (see Section 4.6) and a trace mechanism (described in this section).Note that debugging at the VM level is useful for debugging the interpretivesystem, but not usually for debugging the end-user's program, so the inter-preter writer may want to provide additional facilities for debugging end-userprograms.Figure 7 shows the tracing code that we left out of Fig. 5. NAME is a macroto output the instruction name and the contents of interesting VM registers(e.g., the instruction pointer and the stack pointers). The trace is written tothe �le vm out and thus can be directed anywhere without upsetting stdoutor stderr. The user de�nes the printarg functions and can thus control howthe arguments and results are displayed (useful for types like functions that arebetter displayed symbolically).The tracing outputs are surrounded by #ifdefs to avoid inuencing thecode quality for the non-debugging version of the interpreter; they are also10



I_ipush_iadd:{Cell _IP0; /* synthetic names for stack item vars */Cell _sp0;Cell _sp1;NEXT_P0;_IP0 = vm_Cell2Cell(IPTOS); /* fetch superinstruction arguments */_sp0 = vm_Cell2Cell(spTOS);INC_IP(1); /* stack pointer update(s) *//* ipush ( #i -- i ) */ /* component instruction ipush */{ int i; /* declare ipush stack items */i = vm_Cell2i(_IP0); /* fetch ipush argument */{ /* ipush user-supplied C code */}_sp1 = vm_i2Cell(i); /* store ipush result */}/* iadd ( i1 i2 -- i ) */ /* component instruction iadd */{ int i1; /* declare iadd stack items */int i2;int i;i1 = vm_Cell2i(_sp0); /* fetch iadd arguments */i2 = vm_Cell2i(_sp1);{ /* iadd user-supplied C code */i = i1+i2;}_sp0 = vm_i2Cell(i); /* store iadd result */}NEXT_P1;spTOS = vm_Cell2Cell(_sp0); /* store superinstruction result */NEXT_P2;}Figure 8: Simpli�ed version of the code generated for the ipush iadd superin-struction in the *-vm.i �le (see text for a description)surrounded by if (vm debug) to allow switching tracing on and o� at run-time(e.g., from the C debugger).4.3 SuperinstructionsFigure 8 shows the code that vmgen produces for the superinstruction ipush iadd.It introduces additional variables for all the stack items involved in the superin-struction, loads the arguments into these variables at the start, stores the resultsfrom these arguments at the end, and performs combined stack pointer updatesat the start (in our example, there is no overall change of sp, so only IP isupdated, using the INC IP macro).The code generated for each component instruction of a superinstruction is11



ldq t0,0(s1) ;_IP0 = vm_Cell2Cell(IPTOS)ldq s2,8(s1) ;load next VM instructionaddq s1,0x10,s1 ;increment VM instruction pointeraddl t0,s4,s4 ;i = i1+i2;jmp (s2) ;jump to next VM instructionFigure 9: Alpha code produced for ipush iaddsimilar to the code generated for the same instruction as a simple instruction,but the arguments are fetched from and the results are stored to the stack itemvariables of the superinstruction, there are no stack pointer updates and noinstruction dispatch code.This approach relies heavily on the optimization capabilities of the C com-piler, in particular copy propagation. Fortunately, GCC is quite good at that,as shown in Fig. 9. The code is even shorter than the code for iadd, because spis not updated. As you can see, combining instructions into a superinstructionnot only optimizes dispatches away, but also stack accesses and stack pointerupdates.The debugging code (not shown) is inserted into the component instructions,not the superinstruction; the advantages of this approach are that the argumentsand results are reported with meaningful names and that the output is the same(and, e.g., comparable with diff) whether or not instructions are combined intosuperinstructions; the disadvantage is that the superinstructions are not visiblein the debugging output.4.4 LabelsWe implement threaded code using GNU C's labels-as-values feature. One prob-lem with this approach is that the labels are only visible in the function con-taining the interpreter engine. However, we also need to know these labels inthe functions that generate the VM code.Our solution is to store all the labels in an array, and return the array from aspecial call to the engine function, so that they can be globally accessed, throughthe variable vm inst.eVmgen supports this approach by generating the contents of the array ini-tializer in the �le *-labels.i. For example, for iadd it generates(Label)&&I_iadd,This is the GNU C syntax for the address of the label I iadd.4.5 VM code generation supportVmgen generates functions for generating VM code in the �le *-gen.i. Forexample, here is the function to generate an ipush instruction (ipush pushesa constant on the stack; it takes an immediate argument and is therefore a bitmore interesting than iadd):eOf course, any goto to any of these labels must still occur from within the engine function.They are passed outside in order to avoid having to put all the VM code generation code intothe engine function. 12



void gen_ipush(Inst **ctp, int i){ gen_inst(ctp, vm_inst[1]);genarg_i(ctp, i);} There is a pointer to the end of the generated code (pointed to by ctp),which is incremented by gen inst and genarg i. vm inst[1] contains thelabel I ipush.The advantages of providing these functions are: The front end can use asymbolic name instead of having to refer to vm inst[1] etc., increasing read-ability and maintainability; passing an immediate argument to such a functionincreases readability; and the type checker of the C compiler can check thenumber and types of the arguments.The following example shows how these functions might be used in a front-end written in yacc:expr: num { gen_ipush(&p, $1); }| expr '+' expr { gen_iadd(&p); }4.6 DisassemblerHaving a VM disassembler is useful for debugging the front end of the inter-pretive system. All the information necessary for VM disassembly is present inthe instruction descriptions, so vmgen generates the instruction-speci�c partsautomatically:if (ip[0] == vm_inst[1]) {fputs("ipush", vm_out);fputc(' ', vm_out); printarg_i((int)ip[1]);ip += 2;goto _endif_;} This example shows the code generated for disassembling the VM instructionipush. The if condition tests whether the current instruction (ip[0]) is ipush(vm inst[1]). If so, it prints the name of the instruction and its arguments,and sets ip to point to the next instruction. Printing the instruction's addresscan be done in the enclosing loop.The sequence of ifs results in a linear search of the existing VM instructions;we chose this approach for its simplicity and because the disassembler is nottime-critical.f4.7 Pro�lingVmgen supports pro�ling at the VM level. The goal is to provide information tothe interpreter writer about frequently-occurring (both statically and dynami-cally) sequences of VM instructions. The interpreter writer can then use thisinformation to select sequences for combining them into superinstructions.fThe if ends with a goto endif instead of an else because a long else if cascadeoverruns the parser stack of GCC (after about 2000 else ifs). We cannot use switch instead,because vm inst[1] is not a valid case label. 13



The approach to pro�ling taken here is to record how often the VM controlow branches to each VM branch target. For conditional branches, the fall-through path is also counted as a branch target. At the end of the run, thecounts of VM basic blocks entered by fall-through (without a conditional branch)are corrected, the basic blocks are disassembled, and their subsequences areoutput with attached execution frequencies. There are scripts for aggregatingthis output into totals for static occurences and dynamic execution frequencies,and to process them into superinstruction rules for the .vmg �le. This branch-target counting approach is quite fast (slowdown factor � 2), so you can pro�lelong-running applications.The support for pro�ling comes in several parts:� The �le profile.c contains most of the routines used by pro�ling.� The code produced for a VM branch (a VM instruction with SET IP)contains a call to SUPER END near the end; so the interpreter writer justneeds to de�ne SUPER END as vm count block(IP) for the pro�ling versionof the interpreter.� Vmgen generates the �le *-profile.i which performs the disassemblingfor profile.c.The *-profile.i code for an instruction is similar to the disassembler code:if (ip[0] == vm_inst[1]) {add_inst(b, "ipush");ip += 2;goto _endif_;} Disassembling a basic block ends if ip points to the start of another basicblock or if the C code of the instruction contains SET IP or SUPER END.This pro�ling approach does not notice basic block boundaries arising fromtargets of branches that are not taken in the pro�ling run. However, the frontend can register additional basic block boundaries explicitly if that additionalprecision is desired.4.8 Peephole OptimizationThe current approach to combining instructions into superinstructions is a verysimple peephole-optimizing approach: Every invocation of gen inst (see Sec-tion 4.5) checks if the new instruction can be combined with the last instructioninto a superinstruction; of course, the last instruction can already be a superin-struction.Instructions must not be combined across VM branch targets (because youcannot branch into the middle of a superinstruction), so accurate reporting ofVM branch targets is essential (but usually easy, because the front-end knowsbranch targets during VM code generation).Vmgen supports this approach with routines in peephole.c and by generat-ing tables in *-peephole.i for mapping two instructions to a superinstruction:{ 1, 0, 2}, /* ipush_iadd */14



This is the rule for combining ipush (index 1) and iadd (index 0) intoipush iadd (index 2).Peephole optimization is transparent to the human-written code generationcode: For example, if there is a call to gen ipush, followed by a call to gen iadd,then the code generation support code automatically generates ipush iadd.The only additional requirement is to report basic block boundaries arisingfrom branch targets. Once you have done that, you can add or delete superin-structions at will, rebuild the interpreter, and the new superinstructions areused automatically.5 OptimizationsVmgen implements a number of optimizations and supports a few others. Theoptimizations performed when combining instructions into superinstructionshave already been described in Section 4.3 and 4.8.5.1 Scheduling and prefetchingIf vmgen were to generate a single NEXT (dispatch next VM instruction) macroinvocation at the end of the code for each instruction, GCC might not be ableto schedule the NEXT code to be processed in parallel with the rest of the codefor the instruction, e.g., if the rest of the code ends with a basic block boundaryor with a store (potential aliasing with the load at the start of the dispatchcodeg).Therefore, vmgen generates three macro invocations for dispatch (NEXT P0,NEXT P1, NEXT P2) and distributes them through the code for an instruction.There are various ways to de�ne these macros (and some related ones, e.g.,ADD IP and SET IP) to optimize for the speci�c properties of the architecturesand microarchitectures, e.g.: number of registers, the latency between the VMinstruction load and the dispatch jump, and autoincrement addressing mode.This scheme even allows prefetching the next-but-one VM instruction; Gforth(an interpreter built with vmgen) uses this on the PowerPC architecture to goodadvantage (about 20% speedup, see Section 7.3).Figure 6 shows an example of well-scheduled code: the code for dispatchingthe next instruction is interleaved with the other code.Vmgen also supports scheduling in other ways: e.g., the stack pointer updatesare between the loads from the stack and the user-provided C code to �ll thelatency of the loads; this means that the C code also �lls the update-to-storelatency (address-generation interlock) that some processors have.5.2 Top-of-stack cachingVmgen supports keeping the top-of-stack item (TOS) of each stack in a register(i.e., at the C level, in a local variable). This optimization has the followingbene�ts:� It reduces the number of loads from and stores to a stack (by one each)of every VM instruction that takes one or more arguments and producesgThe restrict feature of ISO C'99 could be used to avoid aliasing, but was not availablewhen we originally encountered this problem in 1992.15



one or more results on that stack. This halves the number of data-stackmemory accesses in Gforth [Ert95].� Many of the remaining loads and stores are placed further away from theinstructions that use or produce the result, supporting more instruction-level parallelism; this is especially important for oating-point operationson in-order execution CPUs.The downside of this optimization is that it requires an additional register,possibly spilling a di�erent VM register into memory. Still, we see an overallspeedup for Gforth even on the register-starved IA32 (Pentium, Athlon) archi-tecture.Vmgen performs this optimization by replacing [0] with TOS when referenc-ing stack items. In addition, there are the following cases to consider:� If a VM instruction takes no arguments from a stack but produces results,it has to ush (store) the TOS for that stack to memory at the start ofthe VM instruction; that TOS will be re�lled from the results at the end.� If a VM instruction produces no results on a stack but takes arguments,it has to re�ll (load) the TOS for that stack from memory at the end ofthe VM instruction.� However, if the VM instruction does not access the stack at all, the TOSneed not be spilled and re�lled.You can see the bene�ts of these optimizations in Fig. 6 (only one memoryaccess for three stack accesses) and Fig. 9 (no stack memory accesses remaining).As long as all stack accesses are managed by vmgen, this optimization istransparent to the interpreter writer (apart from the need to de�ne a few macros,e.g., spTOS).However, sometimes an interpreter needs to access stack items in memory(e.g., JVM locals), or set the stack pointer (e.g., JVM return instructions).If the VM contains such instructions, the user has two options:� Disable top-of-stack caching.� Flush the top-of-stack cache explicitly before the stack access or stackpointer change, and reload it afterwards.5.3 Eliminating stack storesFor VM instructions likedup ( i -- i i )naively generated code would store i twice, one store (for the bottom element)into the memory location it was loaded from. This store is redundant, but theC compiler does not reliably optimize it away.Therefore, vmgen optimizes it away at the C code level. It uses the name ofthe stack item as an indication: if a result stack item has the same name as theargument stack item coming from that location, vmgen suppresses the store.16



Vmgen requires that the user-supplied C code does not change argumentstack items, otherwise this optimization would be incorrect. Currently thisrequirement is not checked, but it could be enforced by declaring the argumentstack item variables const and using an initialization instead of the assignmentto the variable.There are two complications, however: If top-of-stack caching is enabled,the bottom-element store in the dup example is no longer redundant, because icomes from the TOS register, and the store is to memory (conversely, the topstore is to the TOS register and GCC optimizes it away); so, in the exampleabove vmgen generates code for conditionally compiling the store.The other complication is that store optimization is hard to do for superin-structions, because it would require tracking the stack items through the com-ponents. Therefore, vmgen currently does not perform the store optimizationfor superinstructions.5.4 Branch predictionMispredictions of indirect branches are a major component of the run-time ofe�cient interpreters [EG01]. Many current processors use a branch target bu�er(BTB) to predict indirect branches, i.e., they predict that the target addressof a particular indirect branch will be the same as on the last execution of thebranch.So, ideally, we should use a di�erent indirect branch if the next VM in-struction is di�erent from the last time an indirect branch is executed. On ageneral scope, this means that each VM instruction should have a separate in-direct branch (our threaded-code dispatch macros ensure this), and that eachVM instruction (or superinstruction) should occur at most once in an inner loop(frequently-used VM instructions are a problem here, but superinstructions canmitigate that).For conditional branch VM instructions it is likely that the two possiblenext VM instructions are di�erent, so it is a good idea to use di�erent indirectbranches for them. Vmgen supports this optimization with the macro TAIL (seeSection 3.2). Vmgen expands this macro into the whole end part of the VMinstruction (or superinstruction), including the code for storing the stack itemsinto the appropriate memory locations (and top-of-stack register(s)).6 ExperienceWe have used vmgen to implement two interpreters:Gforth is a portable product-quality interpretive implementation of Forth[Ert93]. Forth is a stack-based language, and Gforth has three programmer-visible stacks (data stack, return-stack, and oating-point stack); most of theVM instructions are directly used as Forth words. The Gforth-0.5.0 VM speci�-cation has 2340 lines, contains 319 VM instructions, and vmgen generates 15466lines of C from this (with no superinstructions). The Gforth project started in1992 and Gforth has been distributed as a GNU package since 1996. Vmgenhas been used from the start and proved to be very useful, not just because itallowed adding new VM instructions with little e�ort, but also because it made17



it easy to generate additional output formats that were not envisioned originally(e.g., a TAGS �le supporting fast navigation of the VM description from Emacs).The other interpreter we implemented is a threaded-code variant of the Ca-cao JVM JIT compiler [GEK01]. The goals of this project are to see how usefulvmgen is for other interpreters than Gforth, to add any missing functionality,and to build a high-performance interpreter for the JVM. In order to achieve thelast goal, we decided to translate the original bytecode into threaded code fora JVM-like VM in JIT-compiler fashion. This avoids the performance penaltiesof bytecode interpretation (in particular for immediate operand access), and al-lows having more than 256 VM instructions (including superinstructions). Themanually written VM speci�cation has 1089 lines and contains 156 VM instruc-tions (we did not do a 1:1 mapping of the JVM instructions to our VM); inaddition, there are 113 VM instructions for JNI functions that are generatedautomatically; vmgen generates 14623 lines of C code from this (with no su-perinstructions).Vmgen works well for threaded-code Cacao; we added a few new features forthis project that were not necessary for Gforth (e.g., generating a VM disassem-bler and VM code generation support), but nothing unexpected. Actually theuse of vmgen in Cacao is more straightforward than in Gforth.h Using vmgen fora byte-code interpreter should be possible; however, because vmgen currentlysupports only types with up to two stack slots, dealing with immediate operandswith more than two bytes (coming from the instruction stream \stack") wouldcurrently require manual construction of the operands out of smaller fragments.The presence of superinstructions had an interesting e�ect when we wrotethreaded-code Cacao: In several cases where we considered introducing a newVM instruction, we just used a sequence of already existing VM instructions,because the new VM instruction would be introduced automatically if the se-quence was executed frequently enough. So, superinstructions are not just arun-time optimization, but they also help optimizing programming time.Vmgen needs a few seconds to run. However, compiling the resulting �lescan take several minutes even on fast machines, because some of the functionsto be compiled are huge after including the generated code (e.g., 135000 lines forthe engine function of Cacao with 1069 superinstructions). The main practicallimit, however, is memory during compilation: Compiling Gforth with 1300superinstructions requires about 200MB on a 32-bit machine and about 350MBon a 64-bit machine. Compiling Cacao with 2400 superinstructions requiresabout 800MB on a 64-bit machine (and severely thrashes on a 512MB machine).Historically, the root of vmgen is the experience gained in writing a Prologinterpreter based on the WAM (Anton Ertl, Thomas Graf, Andreas Krall 1990)and a 4GL interpreter based on a stack-based VM (Anton Ertl 1991); bothprojects were done at DMS Decision Management Systems GmbH, Vienna. Sowhen the Gforth project started in 1992, we knew the repetitive and automat-able parts of writing an interpreter, and wrote a generator for it, �rst in EmacsLisp, with a rewrite in Forth in 1994 (the Elisp version was Emacs-version-dependent, slow, and hard to modify); the current version consists mainly of a1246-line Forth program. The early experiences also inuenced the modi�ca-tions that we performed when we generalized the generator tailored for Gforth'shGforth requires a few additional twists because its basic implementation model is indirectthreaded code [Dew75]; the code that deals with that additional complication is small enoughthat we did not create automatic support for it.18



needs into a general VM interpreter generator.7 PerformanceIn this section, we present basic performance data and evaluate the e�ect of thevarious optimizations. Many of the optimizations have been evaluated in earlierpapers; the contribution of this section is in a more detailed evaluation and inmeasurements on modern hardware (branch prediction hardware makes a bigdi�erence). Also, the earlier measurements were performed in environments thatare di�erent from the environment we are using (i.e., di�erent VMs, di�erentdispatch method, di�erent hardware), so we performed these measurements tovalidate the earlier results, and to quantify the e�ects of the optimizations oninterpreters generated with vmgen on modern hardware.7.1 Benchmarks and environmentThe Forth benchmarks are:sieve, bubble, matrix, �b Small integer benchmarks.brainless (0.0.0; on Alphas 0.0.2) A chess program written by David K�uhling(3000 lines).brew (0.03z9) Evolutionary programming simulation, written by Robert Ep-precht (18000 lines); we did not run this benchmark on the Alphas (it isnot 64-bit clean).pentomino A puzzle solver, written by Bruce Hoyt (500 lines).The JVM benchmarks are:javac The JDK 1.0 Java compiler compiling JavaLex.db The SPEC JVM98 benchmark 209 db.isieve A small integer benchmark.suml A tiny benchmark that does nothing but increment long variables. Itis designed to maximize the speed di�erence between native-code Cacaoand interpreters; e.g., it uses longs because the JVM requires more VMinstructions for incrementing a long than an int (there is no long version ofiinc). The value of this benchmark is in providing worst-case performancenumbers for interpreters rather than realistic numbers.Table 1 shows the environments we used for most benchmark runs (excep-tions are noted where they occur). On all machines we used GCC 2.95 forcompiling C code.The baseline interpreters we use in the following sections have all optimiza-tions applied except peephole optimization for using superinstructions; we didnot apply superinstructions in the baseline because we are still experimentingiBugs in Cacao (already present in the original native-code version) prevented runningmore of SPEC JVM98. 19



CPU Arch. Clock System OSAthlon IA32 800MHz Abit KT7 Linux-2.4.0, glibc-2.1Pentium III IA32 750MHz Asus CUBX Linux-2.2.14, glibc-2.1PPC 7400 PowerPC 450MHz PowerMac G4 Linux-2.2.9, glibc-2.1PPC 604e PowerPC 200MHz PowerMac 7500 Linux-2.2.9, glibc-2.121064a Alpha 300MHz AlphaPC64 Linux-2.2.13, glibc-2.021164a Alpha 600MHz PC164LX Linux-2.2.13, glibc-2.021264 Alpha 500MHz XP 1000 Linux-2.2.14, glibc-2.0Table 1: Hardware and OS used for benchmarkingAthlon sieve bubble matrix �b brainless brew pent.BigForth 2.0.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00Gforth 2.89 3.11 8.68 5.59 3.97 1.81 6.81Win32Forth 4.2 4.63 4.68 11.23 8.09 4.47 13.83PFE 0.30.90 14.97 14.94 23.95 23.59 8.20 3.74 24.5121064a javac db siev sumlCacao native 1.00 1.00 1.00 1.00Cacao int 2.12 2.29 10.16 39.91DEC JVM 1.1.4 native 13.14 23.65 2.04 3.85DEC JVM 1.1.4 int 15.80 27.50 22.51 104.88OSF JVM 1.0.1 int 29.06 156.4221164a javac db siev sumlCacao native 1.00 1.00 1.00 1.00Cacao int 2.27 2.10 17.54 25.08DEC JVM 1.3.1 native 5.01 2.52 3.23Ka�e 1.0.5 int 19.57 63.47 93.21Table 2: Relative user times of running benchmarks with Gforth, Cacao int andtheir competitors (smaller is better)with the selection of the right superinstructions, and because superinstructionsincrease the chances of I-cache conicts, which can cause large performancevariations that may hide other performance e�ects.On IA32 we compiled Gforth (all versions we compare) with explicit registerallocation of the most important VM registers, because otherwise GCC spillssome of them to memory, resulting in signi�cant slowdown (factor 1.5{2 on theAthlon)).7.2 Basic performanceThis section compares the performance of interpreters generated with vmgenwith the performance of other systems.Table 2 compares the performance of the interpreters generated with vmgen(Gforth and Cacao int) with other language implementations on the same hard-ware. The results are execution times relative to the fastest implementation(i.e., smaller is better).BigForth is a relatively simple Forth native code compiler (it uses macro20



expansion and peephole optimization for code generation) [Pay91]; Gforth is1.81{8.68 times slower on the Athlon; on the Pentium III the factors are similar(2.36{7.96). The small slowdown on brew is probably caused by library functionsthat are implemented more e�ciently in Gforth (with the right superinstructionsGforth beats BigForth on brew).Win32Forth is a Forth interpreter written in assembly language. We ranit on Windows 95 and measured elapsed time.j Why is Win32Forth slower(factor 1.13{1.60 excluding pentomino) than Gforth? The two main reasonsare: Win32Forth uses a position-independent image format, and relocates atrun-time; this requires one additional computation on every memory accessinto the image; Gforth avoids this overhead by relocating at load time. AndWin32Forth uses indirect threaded code, i.e., one indirection more per VMinstruction dispatch (in Gforth the slowdown caused by indirect threaded codeis 1.13{1.4). Gforth's speedup over Win32Forth shows that it is possible tocreate fast interpreters with vmgen.PFE is a Forth interpreter written in C; execution speed is only a sec-ondary goal in its development. Still, it is one of the faster C-based Forthinterpreters (at least when using GNU C's global register variables (con�gureoption --with-regs), as we have done). Gforth's speedup over PFE and otherC-based interpreters shows that the speedup between di�erent interpreters canbe larger than the speedup from a fast interpreter to native code, so you cannotgeneralize from the performance of one interpreter to interpreters in general.Cacao native is a JVM JIT compiler that allocates locals and stack items toregisters and also performs loop optimizations (a�ects only the sieve results). Itshares code like the garbage collector and synchronization with Cacao int. Onthe small benchmarks, the slowdown of Cacao int is more than a factor of 10(with a worst case slow-down of 40), but on the larger ones the slowdown is afactor of about 2. One important reason for this is that (according to gprof)for these benchmarks Cacao int spends about 30% of its time in routines likesynchronization or garbage collection that are the same speed on both imple-mentations; so even with an in�nite speedup on the rest Cacao native could getonly a speedup of 3.33.We ran the DEC JVM 1.1.4 and OSF JVM under Digital Unix 4.0F. TheDEC JVM native (JIT) versions beat Cacao int by a lot on the small bench-marks, but are slower than Cacao int on the large benchmarks. For the DECJVM 1.1.4 we know that this is due to a slow implementation of synchronization[KP98]. The moral of these results is that speeding up run-time system routineslike synchronization can have more impact (and probably costs less e�ort) thanimplementing a JIT compiler to native-code.The other interpretive JVM implementations are slower than Cacao int bymore than a factor of two on all benchmarks; we believe that this speed ad-vantage is due to the threaded code implementation and the other performancefeatures that Cacao int derives from vmgen.In conclusion, even without superinstructions the performance of interpretersgenerated with vmgen is very competitive relative to other interpreters, and theslowdown over native-code compilers is limited.jFor Gforth under Linux the elapsed time was close to the user time, except for the pen-tomino benchmark, which writes a lot to the terminal; so we expect that these timings (exceptpentomino) are comparable to the other times.21
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A speedup of prefetching (PowerPC default) over no scheduling supportB speedup of early fetch (Alpha default) over prefetchingC speedup of early fetch (Alpha default) over no scheduling supportD speedup of early fetch (no TOS caching) over no scheduling support (no TOS caching)Figure 10: Comparing several dispatch code scheduling variants7.3 Scheduling and prefetchingGforth de�nes the macros NEXT P0 etc. di�erently for di�erent architectures,mainly to support the C compiler in scheduling and code selection (e.g., autoin-crement addressing modes).In particular: on the Alpha architecture we use an early fetch of the next VMinstruction (in NEXT P0) to support �lling the delay slots of that load instruction;on Power/PowerPC Gforth pre-fetches the next-but-one instruction in NEXT P1,because these CPUs usually have a particularly long load-to-jump latency (7cycles on the PPC 604). We do not schedule the instruction fetch early onIA32, because that would increase register pressure and cause more spilling.Figure 10 shows the results of our evaluations of di�erent scheduling strate-gies on Alphas and PowerPCs.On the PowerPCs prefetching gives a good speedup (� 1:2) over no schedul-ing, because of the long load-to-jump latencies. We did not compare earlyfetching with no scheduling on the PowerPC, but we expect the results wouldbe similar to the results on the Alphas.On the Alphas, there is little di�erence between the three scheduling strate-gies.The small di�erence between early fetching and prefetching (case B in Fig. 10)is easily explained by the fact that the Alphas have a relatively short load-to-jump latency, so prefetching does not help often or much; and they have enoughresources that the additional move necessary with prefetching hurts little or notat all.But we were surprised by the small di�erence between early fetch and noscheduling on the Alpha (case C in Fig. 10). Looking at the machine code, wefound that GCC managed to schedule the load well ahead of the jump by itselfin many cases, because in many VM instructions there is no store or basic blockboundary that would impede scheduling.However, when we disabled top-of-stack caching in both variants (case Din Fig. 10), using our scheduling support provided signi�cant speedups over noscheduling support, because then many VM instructions perform a store nearthe end. The signi�cance of this experiment is that in other VMs stores or basicblock boundaries near the end of the VM instruction might be more frequentthan in our baseline Gforth, so explicit early fetching may have more value in22
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Figure 11: Speedup of the base system over a version without top-of-stackcachinggeneral than is apparent from the results for case C.In conclusion, for best performance the dispatch macros have to be de�nedin a processor-speci�c way; fortunately, the interpreter writer can use Gforth'smacros as a starting point (e.g., we did so for Cacao int).7.4 Top-of-stack cachingTo evaluate the e�ect of top-of-stack caching, we compiled Gforth on all ma-chines without top-of-stack caching (this requires just de�ning the preprocessorsymbol USE NO TOS) and compared the result to the base system. You �nd theresults in Fig. 11.On the IA32 processors (in particular the Athlon) top-of-stack caching pro-vides a surprisingly large speedup, given that this architecture is register-starvedand that the optimization increases register pressure; looking at the machinecode of some frequently-executed VM instructions, we did not see additionalspill code.On the PowerPCs the speedup is even larger, as we expected on a machinewith lots of registers.To our surprise, the speedup of top-of-stack caching on the Alphas (in par-ticular, the 21164a) is relatively small, and for some benchmarks there is evena slowdown. Apparently these processors have enough resources to process theadditional loads and stores incurred without top-of-stack caching; and appar-ently the additional latencies are not a problem or masked by parallel processingwith other data (e.g., VM instruction fetch). We explain the slowdowns withnon-monotonic e�ects in instruction issuing (i.e., inserting an instruction cancause a speedup); this explanation is supported by the fact that the �rst threebenchmarks show a slowdown on the 21164a and a large speedup on the 21264or vice versa.In conclusion, top-of-stack caching provides a performance bene�t on mostprocessors, but the size of the bene�t is hard to predict.7.5 Eliminating stack storesWe evaluated the store elimination optimization by disabling it in vmgen, build-ing a version of Gforth with these redundant stores, and measuring it on theAthlon. 23



Among our benchmarks only sieve and bubble pro�t signi�cantly (� 10%)from store elimination, because they use VM instructions in their inner loopsthat pro�t from this optimization. We see little di�erence for the other bench-marks.Using the Athlon's performance-monitoring counters, we see the following:for the three larger benchmarks this optimization reduces the number of instruc-tions executed on the Athlon by 0.6%{0.8%, but on brew and brainless there is asmall slowdown, caused by a higher number of branch mispredictions (probablybecause di�erent code placement leads to di�erent conicts in the BTB).In conclusion, this optimization provides only minor bene�ts.7.6 Branch predictionWe evaluated the e�ect of using di�erent indirect jumps for the di�erent out-comes of VM conditional branches by comparing (on the Athlon) the base Gforthsystem with a version that was built from a variant of the .vmg �le where weeliminated all uses of the TAIL macro.For the small benchmarks we see speedups of 2%{9% from using TAIL. Forthe large benchmarks we see only 0%{2% speedup. Looking at the perfor-mance counter results for the large benchmarks, the branch prediction resultsare mixed; apparently the variation in prediction accuracy (� 1%) resulting fromcode placement di�erences is larger than the the prediction accuracy bene�tswe get from using TAIL.However, we also see a reduction in the number of executed instructions(0.6%{1.7% for the large benchmarks); looking at the machine code, we seethat GCC performs some additional optimizations if we use TAIL.In conclusion, using TAIL gives mixed results for branch prediction, but itproduces minor additional bene�ts.7.7 SuperinstructionsFor Cacao int we selected superinstructions by pro�ling javac and db, and thenmaking superinstructions for all VM instruction sequences up to a given lengththat occured in the run; with two training programs and three maximum lengths(2, 3, 4) this provided six versions of Cacao with superinstructions. Similarly,for Gforth we used brainless and brew for training runs; however, we had lessmemory for compiling the result and the training runs produced more uniquesequences, so we reduced the number of resulting superinstructions by throwingout all sequences with a dynamic execution count of less then 10000 in thetraining run. Figure 12 shows the number of superinstructions generated foreach variant.While we see nice speedups on small benchmarks (up to a factor of 5.46 formatrix on Athlon), we focus on the larger benchmarks in this section, becausethe small benchmarks are too sensitive to the presence or absence of a fewspeci�c superinstructions to be general indicators of performance.Figure 13 shows how the use of superinstructions a�ects execution timeon di�erent processors; we measured brainless and used the superinstructionsderived from brew, but the results for other benchmarks are mostly similar(although the magnitude of the speedups varies).24
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Figure 15: Left: Time spent in I-cache misses on the 21064a (running on in-terpreters trained with brew or db). Right: interpreter engine size (withoutsupporting functions) on Alpha.ing functions like garbage collection or synchronization (only 36% of the I-cachemisses for javac and 8.5% for db are in the threaded-code interpreter); however,for the larger interpreters, the majority of the misses are in the threaded-codeinterpreter.However, large threaded-code interpreters do not necessarily cause I-cachethrashing: e.g., Gforth brew with max. superinstruction length 3 is more thanthree times as large as the 21064a's I-cache, but brainless and pentomino do notthrash the I-cache when running on this interpreter. These di�erences may becaused by locality di�erences in the interpreted programs.We also investigated if the di�erent speedup behaviour of the Forth and theJVM benchmarks was caused by the di�erences in selecting superinstructionsfor Gforth and Cacao: We selected the Cacao superinstructions like we hadselected the Gforth superinstructions (i.e., only sequences with more than 10000dynamic executions). While we saw an improvement, there are still slowdownsand hardly any speedup for the Java benchmarks on the 21064a, and there isstill a large di�erence compared with the Gforth speedups.It is also interesting to compare the e�ect of training on other programsor with other input data to the perfect training of using the measured run astraining run, to see what we can gain at the most by improving superinstructionselection (see Fig. 16). We see that even when training with just one largeprogram, we get surprisingly close to the optimum.In conclusion, superinstructions provide a large optimization potential, es-pecially on processors with BTB-like branch predictors.8 Related workThere are many generators for producing the front end of compilers and interpre-tive systems (e.g., yacc), and there are code generator generators for producing27
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Figure 16: Speedup achieved on Athlon for superinstructions selected with dif-ferent training runs; in x/y, x is the measured run, and y is the training run.the back end of native-code compilers (e.g., burg). However, we know of noother general tool for constructing the back-end of an interpretive system.There are more ambitious projects than vmgen that take a description ofthe syntax and semantics of a language as input and produce an interpreter forthe language as output (e.g., ULCl). The main disadvantage of such systems isthat they are restricted to a certain class of languages, whereas vmgen is moreexible, because it can be combined with any front-end (as long as it can callC functions).The work closest to vmgen are the generators used by the authors of sophis-ticated VM interpreters; the main di�erence to these generators is that vmgenhas been extended and tested as a general VM interpreter generator instead ofbeing speci�c to one project.The Scheme 48 system [KR94] uses an accumulator/stack-based VM. TheVM interpreter is speci�ed in the Scheme subset Pre-Scheme and is compiledinto C code. The generated C code has some similarities with vmgen's output:e.g., it uses VM-instruction-scope variables as intermediate storage. The inputalso appears to have some similarities, but is not described in su�cient detail toallow a detailed comparison (the interpreter speci�cation macros are portrayedmore as a Pre-Scheme application than a separate package). Apart from beingspeci�c to one language implementation, this generator di�ers from vmgen innot performing implicit top-of-stack caching; instead, the VM uses an accumu-lator to support explicit stack caching visible at the VM level (an extra pushinstruction is required to get values from the accumulator to the stack).The C interpreter hti [Pro95] uses a tree-based VM (linearized into a stack-based form) derived from lcc's intermediate representation. The VM interpreteris created using a tree parser generator and can contain superoperators. The VMinstructions are speci�ed in a tree grammar; superoperators correspond to non-trivial tree patterns. The main di�erence from our work is that our generatorlhttp://www.imm.dtu.dk/~jsm/ulc/ 28



works for general stack-based VMs (corresponding to DAGs when represented asdata-ow graphs); e.g., in the vmgen input you can specify dup ( i -- i i ),which cannot be expressed as a tree operator. The di�erences between super-operators and our superinstructions have the following consequences: superop-erators can combine instructions that are not in a sequence (e.g., iload ...isub; other trees may intervene); superinstructions can combine VM instruc-tions that are not tree patterns (e.g., the most frequent sequence in our JVMinterpreter is iload iload). Proebsting reports higher speedups from superop-erators than we see from superinstructions; we believe that this is due to thedi�erences in the VMs used (but di�erences in the benchmarks and the hard-ware may also play a role), so we cannot draw conclusions about the value ofsuperoperators vs. superinstructions.The VVM project allows de�ning VMs through VMlets [FPR98]. VMletsde�ne new VM instructions in terms of existing VM instructions (starting witha base of primitive instructions), like superinstructions in vmgen. The main dif-ferences from vmgen are: With vmgen, you can de�ne arbitrary VM instructionsin terms of C, whereas you are limited to the prede�ned primitives in VVM; asa consequence, you have to use vmgen at interpreter-build time, whereas VVMis much more dynamic and allows loading VMlets at run-time.IL [ASW91] is a low-level language used for writing and porting APL inter-preters; it is easier to retarget the IL compiler than to port an APL interpreterwritten in assembly language; i.e., IL is used as a portable assembly language,like C in vmgen-based interpreters. IL does not automate the tasks that vmgenautomates.Hand-written interpreters usually make extensive use of macros (e.g., Ka�e);this demonstrates that many tasks in writing interpreters are quite repetitive.The advantages of vmgen over a general macro processor are that the users donot need to design their own macro package, and that vmgen does many things(e.g., optimizations) that typical macro packages do not do. However, vmgenonly performs tasks that cannot be done easily by a macro processor; so, vmgendefers some tasks to the C macro processor, and in Gforth we use the m4 macroprocessor to preprocess vmgen input.Most of the performance-enhancing techniques used by vmgen have beenused and published earlier: threaded code and decoding speed [Bel73, Kli81],scheduling and software pipelining the dispatch [Ert93, HA00, HATvdW99],stack caching [Ert93, Ert95] and combining VM instructions [Pro95, PR98,HATvdW99]. New optimizations: the store optimization (Section 5.3), whichcomes up only in a generator like vmgen (whereas a human programmer wouldnot generate the stores in the �rst place); and using tail duplication to improveindirect branch prediction (Section 5.4).There are also other interesting works on interpreters in general [DV90,Kra83], semantic content, virtual machine design and time/space tradeo�s [Pit87],and various optimizations [SC99].Code generation libraries such as vcode [Eng96] and GNU Lightning allowthe user to generate native code by using a �xed, register-based programminginterface. They can be used to implement programming languages and probablyo�er higher execution speed than vmgen-based interpreters, but also have someshortcomings: lack of portability (only a few targets are supported by eachsystem), a �xed interface (in contrast to de�ning a VM tailored for the language)and no debugging support. 29



9 ConclusionVmgen is a generator for virtual machine (VM) interpreters. It automates muchof the repetitive work in writing an interpreter, and supports writing high-performance interpreters.It automatically generates code for accessing VM instruction operands andresults, for dispatching the next VM instruction, for tracing VM instructionexecution, for VM code disassembly, for supporting VM code generation, andfor pro�ling frequent VM instruction sequences (aiding the selection of superin-structions).Vmgen supports and encourages writing high-performance interpreters bysupporting techniques like threaded code, keeping the top-of-stack in a register(speedup 1.2{1.3 on PowerPCs), scheduling the dispatch code to fetch the nextVM instruction early (prefetching speedup 1.2 on PowerPCs), having di�erentinstances of the dispatch code for better branch prediction, eliminating super-uous stores, and combining VM instructions into superinstructions (speedup1.8 on Athlon). Even without superinstructions, the interpreters generated withvmgen are faster than competing interpreters and the slowdown over native-codecompilers is usually less than a factor of 10 (and often as low as 2).Vmgen is available through http://www.complang.tuwien.ac.at/anton/vmgen/.AcknowledgmentsThe referees, John Aycock and Manfred Brockhaus provided valuable commentson earlier drafts of this paper.References[AK91] Hassan A��t-Kaci. The WAM: A (real) tutorial. In Warren's Ab-stract Machine: A Tutorial Reconstruction. MIT Press, 1991.[ASW91] M. Alfonseca, D. Selby, and R. Wilks. The APL IL interpretergenerator. IBM Systems Journal, 30(4):490{497, 1991.[Bel73] James R. Bell. Threaded code. Communications of the ACM,16(6):370{372, 1973.[Dew75] Robert B.K. Dewar. Indirect threaded code. Communications ofthe ACM, 18(6):330{331, June 1975.[DV90] Eddy H. Debaere and Jan M. Van Campenhout. Interpretationand Instruction Path Coprocessing. The MIT Press, 1990.[EG01] M. Anton Ertl and David Gregg. The behaviour of e�cient virtualmachine interpreters on modern architectures. In Euro-Par 2001,pages 403{412. Springer LNCS 2150, 2001.[Eng96] Dawson R. Engler. vcode: A retargetable, extensible, very fastdynamic code generation system. In SIGPLAN '96 Conference onProgramming Language Design and Implementation, pages 160{170, 1996. 30
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