
Software Watermarking

c© April 28, 2011 Christian Collberg

Watermarking

Embed a unique identifier into the executable of a program.

2 / 68

Watermarking

Embed a unique identifier into the executable of a program.

A watermark is much like a copyright notice.

2 / 68

Watermarking

Embed a unique identifier into the executable of a program.

A watermark is much like a copyright notice.

Won’t prevent an attacker from reverse engineering or pirating
it the program.

2 / 68

Watermarking

Embed a unique identifier into the executable of a program.

A watermark is much like a copyright notice.

Won’t prevent an attacker from reverse engineering or pirating
it the program.

Allows us to show that the program the attacker claims to be
his, is actually ours.

2 / 68

Watermarking

Embed a unique identifier into the executable of a program.

A watermark is much like a copyright notice.

Won’t prevent an attacker from reverse engineering or pirating
it the program.

Allows us to show that the program the attacker claims to be
his, is actually ours.

Software fingerprinting: every copy you sell will have a
different unique mark in it

2 / 68

Watermarking

Embed a unique identifier into the executable of a program.

A watermark is much like a copyright notice.

Won’t prevent an attacker from reverse engineering or pirating
it the program.

Allows us to show that the program the attacker claims to be
his, is actually ours.

Software fingerprinting: every copy you sell will have a
different unique mark in it

Trace the copy back to the original owner, and take legal
action.

2 / 68

History and

Applications
p. 468

p0 p1 p2

History and Applications

Customer #27182818

Filtering mark Secret mark
(invisible,fragile)

Fingerprint mark
(invisible,robust)

Meta−data mark
(visible,fragile)

Authorship mark
((in)visible,robust)

Licensing mark
(invisible,robust)

(visible,robust)

Validation mark

MD5(kitten.jpg)

(visible,fragile)
 <right> copy−once </right>

</license>

<license object="kitten.jpg">

 </grant>

 <grant to="Alice">

"Cute kitten in window in Venice"
"Attack mice at dawn"

0xc6ba8f25d2dfc44cf518d7f327c8e83f

PG−13

Customer #31415926
c© 2006 Collberg

Visible vs. invisible marks

A visible mark acts as a deterrent against misuse.

6 / 68

Visible vs. invisible marks

A visible mark acts as a deterrent against misuse.

An invisible mark, can only be extracted using a secret not
available to the end user.

6 / 68

Robust vs. fragile marks

A robust mark is difficult to modify (accidentally or
deliberately).

7 / 68

Robust vs. fragile marks

A robust mark is difficult to modify (accidentally or
deliberately).

A fragile mark could (and sometimes should) be easily
destroyed by transformations to the cover object.

7 / 68

Robust vs. fragile marks

A robust mark is difficult to modify (accidentally or
deliberately).

A fragile mark could (and sometimes should) be easily
destroyed by transformations to the cover object.

Marks should survive lossy compression schemes, shrinking,
cropping, xeroxing, PAL-to-NTSC,...

7 / 68

Authorship marks

Embed an identification of the copyright owner in the cover
object.

8 / 68

Authorship marks

Embed an identification of the copyright owner in the cover
object.

Visible marks act as a deterrent and invisible ones allow a
web-spider to search for images on the web.

8 / 68

Authorship marks

Embed an identification of the copyright owner in the cover
object.

Visible marks act as a deterrent and invisible ones allow a
web-spider to search for images on the web.

Example: Playboy’s use of Digimarc.

8 / 68

Fingerprint marks

Serialize the cover object, i.e. embed a different mark in every
distributed copy.

9 / 68

Fingerprint marks

Serialize the cover object, i.e. embed a different mark in every
distributed copy.

Example: actor Carmine Caridi gave away copies of Academy
Award screening tapes,

9 / 68

Fingerprint marks

Serialize the cover object, i.e. embed a different mark in every
distributed copy.

Example: actor Carmine Caridi gave away copies of Academy
Award screening tapes,

Example: Beta copies of software.

9 / 68

Licensing marks

A licensing mark encodes, invisibly and robustly, the way the
cover object can be used by the end user.

10 / 68

Licensing marks

A licensing mark encodes, invisibly and robustly, the way the
cover object can be used by the end user.

Integral part of any DRM system.

10 / 68

Licensing marks

A licensing mark encodes, invisibly and robustly, the way the
cover object can be used by the end user.

Integral part of any DRM system.

Usage rules could be stored in file headers, but using
watermarking ensures that the data remains even after
transformations.

10 / 68

Meta-data mark

Meta-data marks are visible and (possibly) fragile marks that
embed useful data.

11 / 68

Meta-data mark

Meta-data marks are visible and (possibly) fragile marks that
embed useful data.

Example: captions.

11 / 68

Validation marks

Used by the end user to verify that the marked object is
authentic and hasn’t been altered.

12 / 68

Validation marks

Used by the end user to verify that the marked object is
authentic and hasn’t been altered.

Example: compute an MD5 sum of an object and embed it as
a watermark.

12 / 68

Validation marks

Used by the end user to verify that the marked object is
authentic and hasn’t been altered.

Example: compute an MD5 sum of an object and embed it as
a watermark.

Example: validate that a crime scene photograph hasn’t been
changed (by moving, say, a gun from one person’s hand to
another).

12 / 68

Validation marks

Used by the end user to verify that the marked object is
authentic and hasn’t been altered.

Example: compute an MD5 sum of an object and embed it as
a watermark.

Example: validate that a crime scene photograph hasn’t been
changed (by moving, say, a gun from one person’s hand to
another).

Validation marks need to be fragile,

12 / 68

Filtering marks

A filtering or classification mark carries classification codes to
allow media players to filter out any inappropriate material.

13 / 68

Filtering marks

A filtering or classification mark carries classification codes to
allow media players to filter out any inappropriate material.

The mark needs to be robust and visible.

13 / 68

Secret marks

A secret mark is used for covert communication.

14 / 68

Secret marks

A secret mark is used for covert communication.

steganography.

14 / 68

Secret marks

A secret mark is used for covert communication.

steganography.

Robustness matters not at all.

14 / 68

Secret marks

A secret mark is used for covert communication.

steganography.

Robustness matters not at all.

Invisibility is vitally important.

14 / 68

Secret marks

A secret mark is used for covert communication.

steganography.

Robustness matters not at all.

Invisibility is vitally important.

Example:

Hidden in the X-rated pictures on several

pornographic Web sites and the posted comments

on sports chat rooms may lie the encrypted

blueprints of the next terrorist attack against the

United States or its allies.

14 / 68

Audio marking: Echo hiding

Embed echoes that are short enough to be imperceptible to
the human ear:

p1

δ0
δ1

p0

15 / 68

Audio: Least Significant Bit

LSB of an audio sample is the one that contributes least to
your perception,

p0 p1 p2

16 / 68

Audio: Least Significant Bit

LSB of an audio sample is the one that contributes least to
your perception,

Alter without adversely affecting quality!

p0 p1 p2

16 / 68

Audio: Least Significant Bit

LSB of an audio sample is the one that contributes least to
your perception,

Alter without adversely affecting quality!

Attack: randomly replace the least significant bit of every
sample!

p0 p1 p2

16 / 68

Image: Patchwork

Embed a single bit by manipulating the brightness of pixels.

17 / 68

Image: Patchwork

Embed a single bit by manipulating the brightness of pixels.

Use a pseudo-random number sequence to trace out pairs
(A, B) of pixels

17 / 68

Image: Patchwork

Embed a single bit by manipulating the brightness of pixels.

Use a pseudo-random number sequence to trace out pairs
(A, B) of pixels

During embedding adjust the brightness of A up by a small
amount, and B down by the same small amount:

17 / 68

Patchwork: Embedding algorithm

Embed(P, key):

1 Init RND(key); δ ← 5

2 i ← RND(); j ← RND()

3 Adjust the brightness of pixels ai and

bi : ai ← ai + δ; bj ← bj − δ

4 repeat from 2 ≈ 10000 times

18 / 68

Patchwork: Recognition algorithm

Recognize(P, key):

1 Init RND(key); S ← 0

2 i ← RND(); j ← RND()

3 S ← S + (ai − bj)

4 repeat from 2 ≈ 10000 times

5 if S ≫ 0 ⇒ 0 output "marked!"

19 / 68

Blind vs. Informed

Watermarking recognizers are either blind or informed.

20 / 68

Blind vs. Informed

Watermarking recognizers are either blind or informed.

To extract a blind mark you need the marked object and the
secret key.

20 / 68

Blind vs. Informed

Watermarking recognizers are either blind or informed.

To extract a blind mark you need the marked object and the
secret key.

To extract an informed mark you need extra information, such
as original, unwatermarked, object.

20 / 68

Watermarking text

Cover object types:

the text itself with formatting (ASCII text); or
free-flowing text;
an image of the text (PostScript or PDF).

21 / 68

Watermarking Text: PDF

Similar to marking images.

of my generation,
I saw the best minds

starving hysterical naked

of my generation,

starving hysterical naked

I saw the best minds

{
{12pt

14pt

{
{12pt

12pt

22 / 68

Watermarking Text: PDF

Similar to marking images.

Example: encode 0-bit or a 1-bit by hanging word/line
spacing.

of my generation,
I saw the best minds

starving hysterical naked

of my generation,

starving hysterical naked

I saw the best minds

{
{12pt

14pt

{
{12pt

12pt

22 / 68

Watermarking Text: formatted ASCII

Encode the mark in white-space: 1 space = 0-bit, 2 spaces =
1-bit:

¨ ¥

IÃsawÃtheÃbestÃminds

ofÃmyÃgeneration ,

starvingÃhystericalÃnaked
§ ¦

¨ ¥

IÃÃÃsawÃÃtheÃbestÃÃÃminds

ofÃÃÃÃÃÃÃmyÃÃÃgeneration ,

starvingÃhystericalÃnaked
§ ¦

23 / 68

Watermarking Text: Synonym replacement

Replace words with synonyms.

Insert spelling or punctuation errors.

¨ ¥

I saw the best minds

of my generation ,

starving hysterical naked
§ ¦

¨ ¥

I observed the choice intellects

of my generation ,

famished hysterical nude
§ ¦

24 / 68

Watermarking Text: Syntax

Encode a mark in the syntactic structure of an English text:
1 Devise an extract function which computes a bit from a

sentence,
2 Modify the sentence until it embeds the right bit.

¨ ¥

I saw the best minds

of my generation ,

starving hysterical naked
§ ¦

¨ ¥

It was the best minds

of my generation that I saw ,

starving hysterical naked
§ ¦

25 / 68

Watermarking Text: Atallah et al.

1 Chunk up the watermark, embed one piece per sentence.
2 A function computes one bit per syntax tree node.
3 Modify sentence until these bits embed a watermark chunk.
4 A marker sentence precedes every watermark-bearing sentence.

¨ ¥

I saw the best minds

of my generation ,

starving hysterical naked
§ ¦

¨ ¥

I saw the best minds of my

generation. They were starving

hysterical naked. None , baby ,

none were smarter than them. Nor

more lacking in supply of essential

nutrients or in more need of

adequate clothing. Baby.
§ ¦ 26 / 68

Watermarking

Software
p. 478

Static watermarks

key

Embed
Static Static

Extract

key

w
P

w

P
′

You care about

Encoding bitrate

Stealth

Resilience to attack

28 / 68

Ideas for Software Watermark Algorithms

Encode the watermark

in a permutation of a language structure

29 / 68

Ideas for Software Watermark Algorithms

Encode the watermark

in a permutation of a language structure

in an embedded media object

29 / 68

Ideas for Software Watermark Algorithms

Encode the watermark

in a permutation of a language structure

in an embedded media object

in a statistical property of the program

29 / 68

Ideas for Software Watermark Algorithms

Encode the watermark

in a permutation of a language structure

in an embedded media object

in a statistical property of the program

as a solution to a static analysis problem

29 / 68

Ideas for Software Watermark Algorithms

Encode the watermark

in a permutation of a language structure

in an embedded media object

in a statistical property of the program

as a solution to a static analysis problem

in the topology of a CFG

29 / 68

Dynamic watermarks

Dynamic Dynamic
ExtractEmbedw

P
P

′ w

I1, · · · , IkI1, · · · , Ik

Encode the watermark in the runtime state of the program

30 / 68

Dynamic watermarks

Dynamic Dynamic
ExtractEmbedw

P
P

′ w

I1, · · · , IkI1, · · · , Ik

Encode the watermark in the runtime state of the program

Dynamic marks appear more robust, but are more
cumbersome to use

30 / 68

Attacks against software watermarks

key

Embed
Static Static

Extract

key

w
P

w

P
′

The adversary knows the algorithm

31 / 68

Attacks against software watermarks

key

Embed
Static Static

Extract

key

w
P

w

P
′

The adversary knows the algorithm

The adversary has complete access to the program

31 / 68

Attacks against software watermarks

key

Embed
Static Static

Extract

key

w
P

w

P
′

The adversary knows the algorithm

The adversary has complete access to the program

The adversary doesn’t know the key

31 / 68

Attacks against software watermarks

key

Embed
Static Static

Extract

key

w
P

w

P
′

The adversary knows the algorithm

The adversary has complete access to the program

The adversary doesn’t know the key

The adversary doesn’t know the embedding location (it’s key
dependent)

31 / 68

Attacks — Rewrite attack

Alice has to assume that Bob will try to destroy her marks
before trying to resell the program!

One attack will always succeed. . .

32 / 68

Attacks — Rewrite attack

Alice has to assume that Bob will try to destroy her marks
before trying to resell the program!

One attack will always succeed. . .

42 Extract ?Attack
Rewrite P’’P’

Ideally, this is the only effective attack.

32 / 68

Attacks — Additive attack

Bob can also add his own watermarks to the program:

11

42
P’

Attack
Additive P’’

42
23
19 Extract ?

An additive attack can help Bob to cast doubt in court as to
whose watermark is the original one.

33 / 68

Attacks — Distortive attack

A distortive attack applies semantics-preserving
transformations to try to disturb Alice’s recognizer:

transformations

P’’ ?Distortive

preserving
Semantics−

P’
42 Extract42Attack

34 / 68

Attacks — Distortive attack

A distortive attack applies semantics-preserving
transformations to try to disturb Alice’s recognizer:

transformations

P’’ ?Distortive

preserving
Semantics−

P’
42 Extract42Attack

Transformations: code optimizations, obfuscations,. . .

34 / 68

Attacks — Collusive attack

Bob buys two differently marked copies and comparing them
to discover the location of the fingerprint:

AttackP2

17

P1

42 P’’
ExtractCollusive ?

35 / 68

Attacks — Collusive attack

Bob buys two differently marked copies and comparing them
to discover the location of the fingerprint:

AttackP2

17

P1

42 P’’
ExtractCollusive ?

Alice should apply a different set of obfuscations to each
distributed copy, so that comparing two copies of the same
program will yield little information.

35 / 68

Watermarking Algorithms

Watermarking by

Permutation
p. 486

goto B3if (e) goto B2

· · · · · ·

B2

· · · · · ·

B1

B0

· · · · · ·

goto B2

B5

· · · · · ·

B6

B7

· · · · · ·

if (e) goto B2

· · · · · ·

· · · · · ·

· · · · · ·

· · · · · ·

· · · · · ·

if (e) goto B6

if (e) goto B3

· · · · · ·

· · · · · ·

if (e) goto B2

· · · · · ·

if (e) goto B3

· · · · · ·

· · · · · ·

goto B2

· · · · · ·

if (e) goto B6

B0

B1

B2

B3

B4

B5

B6

B7 B7

B4

B3

B6

B1

B2

B5

B0
goto B1

goto B2

goto B7

goto B5

· · · · · ·

if (e) goto B6

B4

if (e) goto B3

· · · · · ·

B3

Algorithm
wmDM

p. 488

Reordering Basic Blocks

goto B3if (e) goto B2
· · · · · ·

B2

· · · · · ·

B1

B0

· · · · · ·

goto B2

B5

· · · · · ·

B6

B7

· · · · · ·

if (e) goto B2
· · · · · ·

· · · · · ·

· · · · · ·

· · · · · ·

· · · · · ·

if (e) goto B6

if (e) goto B3

· · · · · ·

· · · · · ·

if (e) goto B2
· · · · · ·

if (e) goto B3
· · · · · ·

· · · · · ·

goto B2

· · · · · ·

if (e) goto B6

B0
B1

B2

B3

B4

B5

B6

B7 B7

B4

B3

B6

B1

B2

B5

B0goto B1

goto B2

goto B7

goto B5

· · · · · ·

if (e) goto B6

B4

if (e) goto B3
· · · · · ·

B3

Algorithm wmDM: Reordering Basic Blocks

goto B3if (e) goto B2

· · · · · ·

B2

· · · · · ·

B1

B0

· · · · · ·

goto B2

B5

· · · · · ·

B6

B7

· · · · · ·

if (e) goto B2

· · · · · ·

· · · · · ·

· · · · · ·

· · · · · ·

· · · · · ·

if (e) goto B6

if (e) goto B3

· · · · · ·

· · · · · ·

if (e) goto B2

· · · · · ·

if (e) goto B3

· · · · · ·

· · · · · ·

goto B2

· · · · · ·

if (e) goto B6

B0

B1

B2

B3

B4

B5

B6

B7
B7

B4

B3

B6

B1

B2

B5

B0
goto B1

goto B2

goto B7

goto B5

· · · · · ·

if (e) goto B6

B4

if (e) goto B3

· · · · · ·

B3

39 / 68

Algorithm wmDM: Reordering Basic Blocks

Performance overhead of 0-11% for three standard
high-performance computing benchmarks.

40 / 68

Algorithm wmDM: Reordering Basic Blocks

Performance overhead of 0-11% for three standard
high-performance computing benchmarks.

Negligible slowdown for a set of Java benchmarks.

40 / 68

Algorithm wmDM: Reordering Basic Blocks

Performance overhead of 0-11% for three standard
high-performance computing benchmarks.

Negligible slowdown for a set of Java benchmarks.

If you have m items to reorder you can encode

log2(m!) ≈ log2(
√

2πm(m/e)m) = O(m log m)

watermarking bits.

40 / 68

Algorithm wmDM: Reordering Basic Blocks

Performance overhead of 0-11% for three standard
high-performance computing benchmarks.

Negligible slowdown for a set of Java benchmarks.

If you have m items to reorder you can encode

log2(m!) ≈ log2(
√

2πm(m/e)m) = O(m log m)

watermarking bits.

What about stealth?

40 / 68

Algorithm
wmVVS

p. 506

Watermarks in CFGs

Algorithm wmVVS: Watermarks in CFGs

Basic idea:
1 Embed the watermark in the CFG of a function.

42 / 68

Algorithm wmVVS: Watermarks in CFGs

Basic idea:
1 Embed the watermark in the CFG of a function.
2 Tie the CFG tightly to the rest of the program.

42 / 68

Algorithm wmVVS: Watermarks in CFGs

Basic idea:
1 Embed the watermark in the CFG of a function.
2 Tie the CFG tightly to the rest of the program.

Issues:
1 How do you encode a number in a CFG?
2 How do you find the watermark CFG?
3 How do you attach the watermark CFG to the rest of the

program?

42 / 68

Algorithm wmVVS: Embedding

Generate a stealthy watermark CFG:
1 basic blocks have out-degree of one or two

43 / 68

Algorithm wmVVS: Embedding

Generate a stealthy watermark CFG:
1 basic blocks have out-degree of one or two
2 it is reducible

43 / 68

Algorithm wmVVS: Embedding

Generate a stealthy watermark CFG:
1 basic blocks have out-degree of one or two
2 it is reducible
3 it is shallow (real code isn’t deeply nested)

43 / 68

Algorithm wmVVS: Embedding

Generate a stealthy watermark CFG:
1 basic blocks have out-degree of one or two
2 it is reducible
3 it is shallow (real code isn’t deeply nested)
4 it is small (real functions aren’t big)

43 / 68

Algorithm wmVVS: Embedding

Generate a stealthy watermark CFG:
1 basic blocks have out-degree of one or two
2 it is reducible
3 it is shallow (real code isn’t deeply nested)
4 it is small (real functions aren’t big)
5 it is resilient to edge-flips :

if a>=b goto Bj

· · ·

if a<b goto Bk

· · ·

BjBkBkBj

43 / 68

Algorithm wmVVS: Embedding

Generate a stealthy watermark CFG:
1 basic blocks have out-degree of one or two
2 it is reducible
3 it is shallow (real code isn’t deeply nested)
4 it is small (real functions aren’t big)
5 it is resilient to edge-flips :

if a>=b goto Bj

· · ·

if a<b goto Bk

· · ·

BjBkBkBj

Reducible Permutation Graphs (RPGs)

43 / 68

public static int bogus;

public static int m4(int i) {

i = i & 0x7BFF;

bogus +=2; i-=i>>2;

do {

i = i >> 3;

label: {

if (++bogus <= 0) {

i = i | 0x1000;

if ((bogus += 6) == 0)

break label;

}

++bogus;

i = i * 88 >>> 1;

}

i = i | 0x4;

} while((bogus += 6)<0);

bogus +=2; return i;

}

public void P(boolean S) {

if (S)

System.out.println("YES");

else

System.out.println("NO");

}

public void main (String args []) {

for (int i=1; i<args.length; i++) {

if (args [0]. equals(args[i])) {

P(true);

if (m4(3)<0)

P(false) ;

return;

}

}

m3(-1) ;

P(false);

}

public int bogus;

public int m4(int i) {

i = i & 0x7BFF;

bogus += 2;

i -= i >> 2;

do {

if (i<-6)

P(bogus<i);

i = i >> 3;

label: {

if (++ bogus <= 0) {

i = i | 0x1000;

m3(0);

if ((bogus +=6)==0)

break label;

}

++ bogus;

i = i * 88 >>> 1;

}

i = i | 0x4;

} while (((bogus += 6)<0)

&& (m3(9)>=0))

bogus += 2;

return i;

}

public int m3(int i) {

i = i ^ i >> 0x1F;

i = i / 4 * 3;

do {

i -= i >> 3;

if((bogus += 11) <= 0)

break;

Algorithm wmVVS: Recognition

So, how do you find the watermark CFG among all the “real”
CFGs?

46 / 68

Algorithm wmVVS: Recognition

So, how do you find the watermark CFG among all the “real”
CFGs?

Idea:

Mark the basic blocks,
A 0 for every cover program block, a 1 for every watermark
block.

46 / 68

Algorithm wmVVS: Recognition

So, how do you find the watermark CFG among all the “real”
CFGs?

Idea:

Mark the basic blocks,
A 0 for every cover program block, a 1 for every watermark
block.

Recognition procedure:
1 compute the mark value for each basic block in the program

46 / 68

Algorithm wmVVS: Recognition

So, how do you find the watermark CFG among all the “real”
CFGs?

Idea:

Mark the basic blocks,
A 0 for every cover program block, a 1 for every watermark
block.

Recognition procedure:
1 compute the mark value for each basic block in the program
2 assume that any function with more than t% blocks marked is

a watermark function

46 / 68

Algorithm wmVVS: Recognition

So, how do you find the watermark CFG among all the “real”
CFGs?

Idea:

Mark the basic blocks,
A 0 for every cover program block, a 1 for every watermark
block.

Recognition procedure:
1 compute the mark value for each basic block in the program
2 assume that any function with more than t% blocks marked is

a watermark function
3 construct CFGs for the watermark functions

46 / 68

Algorithm wmVVS: Recognition

So, how do you find the watermark CFG among all the “real”
CFGs?

Idea:

Mark the basic blocks,
A 0 for every cover program block, a 1 for every watermark
block.

Recognition procedure:
1 compute the mark value for each basic block in the program
2 assume that any function with more than t% blocks marked is

a watermark function
3 construct CFGs for the watermark functions
4 decode each one into an integer watermark

46 / 68

Algorithm wmVVS: Recognition

So, how do you find the watermark CFG among all the “real”
CFGs?

Idea:

Mark the basic blocks,
A 0 for every cover program block, a 1 for every watermark
block.

Recognition procedure:
1 compute the mark value for each basic block in the program
2 assume that any function with more than t% blocks marked is

a watermark function
3 construct CFGs for the watermark functions
4 decode each one into an integer watermark

The embedder can split the watermarking into pieces, for
higher bitrate.

46 / 68

Steganographic

Embeddings
p. 522

ESCAPE
AT
DAWN!

Wendy

BobAlice

Steganographic Embeddings

Customer #27182818

Filtering mark Secret mark
(invisible,fragile)

Fingerprint mark
(invisible,robust)

Meta−data mark
(visible,fragile)

Authorship mark
((in)visible,robust)

Licensing mark
(invisible,robust)

(visible,robust)

Validation mark

MD5(kitten.jpg)

(visible,fragile)
 <right> copy−once </right>

</license>

<license object="kitten.jpg">

 </grant>

 <grant to="Alice">

"Cute kitten in window in Venice"
"Attack mice at dawn"

0xc6ba8f25d2dfc44cf518d7f327c8e83f

PG−13

Customer #31415926
c© 2006 Collberg

48 / 68

Watermark Embeddings

Watermarks are

short identifiers
difficult to locate
hard to destroy

49 / 68

Watermark Embeddings

Watermarks are

short identifiers
difficult to locate
hard to destroy

The adversary

knows that the object is marked
knows the algorithm used
doesn’t know the key
is active

49 / 68

Watermark Embeddings

Watermarks are

short identifiers
difficult to locate
hard to destroy

The adversary

knows that the object is marked
knows the algorithm used
doesn’t know the key
is active

You care about

data-rate
stealth
resilience

49 / 68

Steganographic Embeddings

Stegomarks are

long identifiers
difficult to locate

50 / 68

Steganographic Embeddings

Stegomarks are

long identifiers
difficult to locate

The adversary

wants to know if the object is marked
knows the algorithm used
doesn’t know the key
is passive

50 / 68

Steganographic Embeddings

Stegomarks are

long identifiers
difficult to locate

The adversary

wants to know if the object is marked
knows the algorithm used
doesn’t know the key
is passive

You care about

data-rate
stealth

50 / 68

Steganography — Prisoners’ Problem

Alice Bob

51 / 68

Steganography — Prisoners’ Problem

Alice Bob

51 / 68

Steganography — Prisoners’ Problem

Alice Bob

51 / 68

Steganography — Prisoners’ Problem

Wendy

Alice Bob

51 / 68

Steganography — Prisoners’ Problem

Wendy

Alice Bob

51 / 68

Steganography — Prisoners’ Problem

DAWN!

ESCAPE
AT

Wendy

Alice Bob

51 / 68

Steganography — Prisoners’ Problem

ESCAPE
AT
DAWN!

Wendy

BobAlice

51 / 68

Steganography — Null cipher

Easter is soon, dear! So many flowers! Can you

smell them? Are you cold at night? Prison food

stinks! Eat well, still! Are you lonely? The

prison cat is cute! Don’t worry! All is well!

Wendy is nice! Need you!):

52 / 68

Algorithm
wmASB

p. 523

Hidden Messages in x86 Binaries

wm

sym

y.o
y()

sym

x.o
x()

y()
wm −E wm −D

x()

sym

y()

cc

cc
ld

x.c
x()

y.c

y()

strip

wm

_1()
_2()

x()

sym

wm

a1.out
a0.out

a2.out

wmASB: Hidden Messages in x86 Binaries

Basic idea: Play compiler!

whenever the compiler has a choice in which code to

generate, or the order in which to generate it, pick

the choice that embeds the next bits from the

message W .

54 / 68

wmASB: Hidden Messages in x86 Binaries

Basic idea: Play compiler!

whenever the compiler has a choice in which code to

generate, or the order in which to generate it, pick

the choice that embeds the next bits from the

message W .

Four sources of ambiguity:
1 code layout (ordering of chains of basic blocks)

54 / 68

wmASB: Hidden Messages in x86 Binaries

Basic idea: Play compiler!

whenever the compiler has a choice in which code to

generate, or the order in which to generate it, pick

the choice that embeds the next bits from the

message W .

Four sources of ambiguity:
1 code layout (ordering of chains of basic blocks)
2 instruction scheduling (instruction order within basic blocks)

54 / 68

wmASB: Hidden Messages in x86 Binaries

Basic idea: Play compiler!

whenever the compiler has a choice in which code to

generate, or the order in which to generate it, pick

the choice that embeds the next bits from the

message W .

Four sources of ambiguity:
1 code layout (ordering of chains of basic blocks)
2 instruction scheduling (instruction order within basic blocks)
3 register allocation

54 / 68

wmASB: Hidden Messages in x86 Binaries

Basic idea: Play compiler!

whenever the compiler has a choice in which code to

generate, or the order in which to generate it, pick

the choice that embeds the next bits from the

message W .

Four sources of ambiguity:
1 code layout (ordering of chains of basic blocks)
2 instruction scheduling (instruction order within basic blocks)
3 register allocation
4 instruction selection

54 / 68

wmASB: Embedding

1 Construct:

1 codebook B of equivalent instruction sequences

mul ri,x,5

shl ri,x,2

add ri,ri,x

add ri,x,x

add ri,ri,ri
add ri,ri,x

2 statistical model M of real code

55 / 68

wmASB: Embedding

1 Construct:

1 codebook B of equivalent instruction sequences

mul ri,x,5

shl ri,x,2

add ri,ri,x

add ri,x,x

add ri,ri,ri
add ri,ri,x

2 statistical model M of real code

2 Encrypt W with key .

55 / 68

wmASB: Embedding

1 Construct:

1 codebook B of equivalent instruction sequences

mul ri,x,5

shl ri,x,2

add ri,ri,x

add ri,x,x

add ri,ri,ri
add ri,ri,x

2 statistical model M of real code

2 Encrypt W with key .

3 Canonicalize P:

1 Sort block chains, procedures, modules
2 Order instructions in each block in standard order
3 Replace each instruction with the first alternative from B.

55 / 68

wmASB: Embedding

4 Code layout : Embed bits from W by reordering code
segments within the executable.

56 / 68

wmASB: Embedding

4 Code layout : Embed bits from W by reordering code
segments within the executable.

5 Instruction scheduling :

1 Build dependency graph
2 Generate all valid instruction schedules
3 Embed bits from W by picking a schedule

Use M to avoid picking unusual schedules.

56 / 68

wmASB: Embedding

4 Code layout : Embed bits from W by reordering code
segments within the executable.

5 Instruction scheduling :

1 Build dependency graph
2 Generate all valid instruction schedules
3 Embed bits from W by picking a schedule

Use M to avoid picking unusual schedules.

6 Instruction selection: Use B to embed bits from W by
replacing instructions. Use M to avoid unusual instruction
sequences.

56 / 68

wmASB: Stealth

Instruction selection :

There are 3078 different encodings of three instructions for
EAX=(EAX/2)!
Most don’t occur in real code. . .

57 / 68

wmASB: Stealth

Instruction selection :

There are 3078 different encodings of three instructions for
EAX=(EAX/2)!
Most don’t occur in real code. . .

Instruction scheduling :

Avoid bad schedules: no compiler would generate it!
Avoid generating different schedules for two blocks with the
same dependency graph!

57 / 68

wmASB: Stealth

Instruction selection :

There are 3078 different encodings of three instructions for
EAX=(EAX/2)!
Most don’t occur in real code. . .

Instruction scheduling :

Avoid bad schedules: no compiler would generate it!
Avoid generating different schedules for two blocks with the
same dependency graph!

Code layout :

Compilers lay out code for locality: don’t deviate too much
from that!

57 / 68

wmASB: Stealth

Encoding rate

Unstealthy code: 1
27

Stealthy: 1
89 .

58 / 68

wmASB: Stealth

Encoding rate

Unstealthy code: 1
27

Stealthy: 1
89 .

Encoding space:

58% from code layout
25% from instruction scheduling
17% from instruction selection

58 / 68

wmASB: Stealth

Encoding rate

Unstealthy code: 1
27

Stealthy: 1
89 .

Encoding space:

58% from code layout
25% from instruction scheduling
17% from instruction selection

Real code doesn’t use unusual instruction sequences.

Real code contains many schedules for the same dependency
graph

58 / 68

Wanna design a watermarking algorithm?

Find a language structure into which to encode the mark
(CFGs, threads, dynamic control flow. . .)

〈language structure, encoder/decoder , tracer/locator ,
embedder/extractor , attacker/protector〉

59 / 68

Wanna design a watermarking algorithm?

Find a language structure into which to encode the mark
(CFGs, threads, dynamic control flow. . .)

Construct an encoder/decoder (number↔CFG,. . .)

〈language structure, encoder/decoder , tracer/locator ,
embedder/extractor , attacker/protector〉

59 / 68

Wanna design a watermarking algorithm?

Find a language structure into which to encode the mark
(CFGs, threads, dynamic control flow. . .)

Construct an encoder/decoder (number↔CFG,. . .)

Construct a tracer/locater to find locations for the mark
(using key, every function, . . .)

〈language structure, encoder/decoder , tracer/locator ,
embedder/extractor , attacker/protector〉

59 / 68

Wanna design a watermarking algorithm?

Find a language structure into which to encode the mark
(CFGs, threads, dynamic control flow. . .)

Construct an encoder/decoder (number↔CFG,. . .)

Construct a tracer/locater to find locations for the mark
(using key, every function, . . .)

Construct a embedder/extractor to tie the mark to
surrounding code

〈language structure, encoder/decoder , tracer/locator ,
embedder/extractor , attacker/protector〉

59 / 68

Wanna design a watermarking algorithm?

Find a language structure into which to encode the mark
(CFGs, threads, dynamic control flow. . .)

Construct an encoder/decoder (number↔CFG,. . .)

Construct a tracer/locater to find locations for the mark
(using key, every function, . . .)

Construct a embedder/extractor to tie the mark to
surrounding code

Decide on an attack model .

〈language structure, encoder/decoder , tracer/locator ,
embedder/extractor , attacker/protector〉

59 / 68

