
Decompilation

Ximing Yu

May 3, 2011

Decompiler Definition

Decompiler is a program that attempts to perform the inverse
process of the compiler.

Given an executable program compiled in any high-level
language, the aim is to produce a high-level language program
that performs the same function as the executable program.

Input: Machine dependent

Output: Language dependent

3 Main Modules of Decompiler

Front-end

(machine dependent)

Back-end

(language dependent)

Universal Decompilation

Machine (analysis)Binary Program

High Level

Language Program

Front-end

Deals with machine-dependent features and produces a
machine-independent representation.

Input: a binary program for a specific machine

Produces:

Intermediate representation of the program
The program’s control flow graph

Front-end Phases

Loader

Semantic analysis

Parser

Binary Program

Low-level intermediate code

& control flow graph

Front-end Phases

Loader: loads a binary program into virtual memory

Parser:

Disassembles code starting at the entry point given by the
loader.
Follows the instructions sequentially until a change in flow of
control is met. All instruction paths are followed in a recursive
manner.
The intermediate code is generated and the control flow graph
is built.

Semantic analysis: performs idiom analysis and type
propagation.

Intermediate Code

Two levels of intermediate code are required:

A low-level representation that resembles the assembler from
the machine: mapping of machine instructions to assembler
mnemonics. — generated by front-end

A higher-level representation that resembles statements from
a high-level language — generated by the inter-procedural
data flow analysis.

Universal Decompiling Machine

The universal decompiling machine (UDM) is an intermediate
module that is totally machine and language independent.

It deals with flow graphs and the intermediate representation
of the program and performs all the flow analysis the input
program needs.

Universal Decompiling Machine Phases

Control flow Analysis

Data flow Analysis

control flow graph &

low-level intermediate code

high-level intermediate code &

structured control flow graph

Data Flow Analysis

Transform the low-level intermediate representation into a
higher-level representation that resembles a HLL statement.

Eliminate the concept of condition codes (or flags) and
registers, as these concepts do not exist in high-level
languages.

Introduce the concept of expressions and parameter passing,
as these can be used in any HLL program.

asgn (assign)
jcond (conditional jump)
jmp (unconditional jump)
call (sub-routine call)
ret (sub-routine return)

Data Flow Analysis — HLCC

1 cmp ax, bx ; def: SF,ZF,CF

2 jp labZ ; use: SF,ZF ; ud-cc(SF,ZF)={1}

JCOND (ax > bx)

Data Flow Analysis — HLI

.. ... ; other code here

28 MOV ax, di ; ASGN ax, di ; du(ax) = {30}

29 MOV bx, 0Ah ; ASGN bx, 0Ah ; du(bx) = {32,33}

30 CWD ; ASGN dx:ax, ax ; du(ax) = {31}, du(dx) = {31}

31 MOV tmp, dx:ax ; ASGN tmp, dx:ax ; du(tmp) = {32,33}

32 DIV bx ; ASGN ax, tmp / bx ; du(ax) = {}

33 MOD bx ; ASGN dx, tmp % bx ; du(dx) = {34}

34 MOV si, dx ; ASGN si, dx

.. ... ; other code here, no use of ax

ASGN si, di % 0Ah

Control Flow Analysis

High-level control structures:

Loops

pre-test loop: while()
post-test loop: repeat ...until()

infinite loop: loop

Conditionals

2-way conditionals: if ...then and if ...then ...else

n-way conditionals: case

Control Flow Analysis

There are three types of nodes of subgraphs that represent
high-level loops and 2-way structures:

Header node: entry node of a structure.

Follow node: the first node that is executed after a possibly
nested structure has finished.

Latching node: the last node in a loop; the one that takes as
immediate successor the header of a loop.

Interval Theory

By Interval theory, an interval I (h) is the maximal,
single-entry subgraph in which h is the only entry node and in
which all closed paths contain h. The unique interval node h

is called the header node. By selecting the proper set of
header nodes, graph G can be partitioned into a unique set of
disjoint interval I = {I (h1), I (h2), . . . , I (hn)}

The derived sequence of graphs, G 1
. . . gn is based on the

intervals of graph G . The first order graph, G 1, is G . The
second order graph, G 2, is derived from G 1, by collapsing
each interval in G 1 into a node.

Interval Theory

Structuring Loops

Given an interval I (hj) with header hj , there is a loop rooted
at hj if there is a back-edge to the header node hj from a
latching node nk ∈ I (hj).

Once a loop has been found, the type of loop is determined by
the type of header and latching nodes of the loop.

A while() loop is characterized by a 2-way header node and a
1-way latching node.
A repeat ...until() is characterized by a 2-way latching
node a non-conditional header node.
A endless loop loop is characterized by a 1-way latching node
and a non-conditional header node.

Structuring Loops — Algorithm

1 Each header of an interval in G 1 is checked for having a
back-edge from a latching node that belongs to the same
interval.

2 If this happens, a loop has been found, so its type is
determined, and the nodes that belong to it are marked.

3 Next, the intervals of G 2, I2 are checked for loops, and the
process is repeated until intervals in In have been checked.

Structuring 2-Way Conditionals

Both a single branch conditional (i.e. if ...then) and an if

...then ...else conditional subgraph have a common
follow node that has the property of being immediately
dominated by the 2-way header node.

When these subgraphs are nested, they can have different
follow nodes or share the same common follow node.

During loop structuring, a 2-way node that belongs to either
the header or the latching node of a loop is marked as being
part of the loop, and must therefore not be processed during
2-way conditional structuring.

Compound Conditions

Whenever a subgraph of the form of the short-circuit evaluated
graphs is found, it is checked for the following properties:

1 Nodes x and y are 2-way nodes.

2 Node y has only 1 in-edge.

3 Node y has a unique instruction; a conditional jump (jcond)
high-level instruction.

4 Nodes x and y must branch to a common t or e node.

Compound Conditional Graphs

Back-end

Restructuring (optional): structuring the graph even further,
so that control structures available in the target language but
not present in the generic set of control structures of the
structuring algorithm, previously described, are utilized.

HLL code generation: generates code for the target HLL
based on the control flow graph and the associated high-level
intermediate code. Involves:

Defines global variables.
Emits code for each procedure/function following a depth first
traversal of the call graph of the program.
If a goto instruction is required, a unique label identifier is
created and placed before the instruction that takes the label.
Variables and procedures are given names of the form loc1,
proc2.

Back-end phases

HLL Code Generation

Restructuring

high-level intermediate code &

structured control flow graph

High Level

Language Program

The Decompiling System

The decompiling system that integrates a decompiler, dcc,
and an automatic signature generator, dccSign.

A signature generator is a front-end module that generates
signatures for compilers and library functions of those
compilers.

Such signatures are stored in a database, and are accessed by
dcc to check whether a subroutine is a library function or not,
in which case, the function is not analyzed by dcc, but
replaced by its library name (e.g. printf()).

