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1 Paper Objective

Meta-level compilation is a technique that introduces meta-level information to the process of com-
pilation to check for system-rule violations. The paper provide innovative methods to dynamically
link meta-level semantics to the compilers in the form of checkers. These checkers take after the
form of high-level state machines defined by a language named, Metal. Static analyses are employed
while the checkers scan the code for system-level violations. The authors also provide insights in the
commercialization of the fruit of their research, Coverity, describing hiccups that they encounter
while advertising their research-based product in the commercial context.

2 Motivation to use Meta-level Compilation as System-Rules Checker

There are currently 3 main approaches to system-rules checking. However, each of them has their
disadvantages which makes system-rules checking a pain.

• Formal Verification
Formal verifications constructs a specification based on the rules of the source-code that it
is verifying. These specifications are often abstractions that attempts to mirror the system-
rules. However, due to the large variations in system-rules that exist in a language, these
abstractions are often too simple with missing features. Furthermore, it is also a huge task to
construct such an abstraction to a fine detail as it requires up-to-date experts in the specific
system to accomplish it. Although this approach allows one to spot violations which is hard to
detect with other means, it requires too much effort to define a comprehensive specification.

• Testing
Testing requires developing test-cases to verify each execution path. This method scale poorly
as the number of execution paths increase exponentially with the code size. Hence, testing
will miss a lot of areas in the code especially when testing engineers are unfamiliar with
the code base that they are testing. Furthermore, locating the error in the code is hard as
test-cases do not provide pinpoint the exact failure.

• Manual Inspection Developers manually examine the code for errors in manual inspection.
Although this approach can spot errors at all level of semantics, it is often tedious with large
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code bases. Furthermore, the efficacy of this method varies widely with the person that is
performing the check.

During compilation, the compiler is binded closely to the system at code-level granularity. This
allows the compiler to reach areas in the code that is hard to spot by other means. Despite this
advantage, as there are no requirements for the compiler to understand the code’s higher semantic
levels, the compiler remain ignorant to the meta-level of the code. Meta-level compilation makes
use of this advantage by introducing mechanism to facilitate system-wide checking. Due to the
nature of compilation, a single checker can easily reach the entire source-code. The authors also
introduced definition languages, rule checking techniques to ensure a much pleasant yet thorough
testing experience.

3 Meta-level Compilation

A state-machine language metal is used to define extensions (i.e., system-rules checkers). These
extensions are dynamically linked into the GNU g++-based compiler, xg++. Static analysis is
performed based on rules defined in a checker.

3.1 Defining a Checker using Metal language

The following information is required in order to define a checker in Metal language.

• Declare any argument format derived from the code used for pattern-matching.

• Define patterns observed within the code that triggers a state transition.

• Define discrete states with possible transition paths that is associated with a pattern.

3.2 Caveats of Meta-level Compilation Checker

• As meta-level compilation is based on static analysis, it cannot spot run-time errors.

• As meta-level compilation is based on a checking mechanism (i.e, in contrast to formal veri-
fication), it cannot spot system-rules that is used in a unique way.

• False positives are inevitable as static analysis is inherently localised checking.

• As the dynamic compiler, xg++, is based on g++, it has compatibility issues with some
relaxed C types and GNU extensions.

4 Meta-level Extensions

4.1 Checking for Assertion System-rule Violation

4.1.1 Expected System Behavior

• Debugging assertions should be turned off in production code.

• Expressions that evaluate to false in assertion is a bug.
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4.1.2 Metal Checker Implementation

• Traverse through the code and search for pattern {assert(expr);}.

• Upon pattern matched, expr is recursively applied to the state-machine.

• The state-machine checks for expressions that resembles a function call, assignments, and
pointer arithmetic. An error is flagged when such an expression is found.

4.2 Checking for Pointer Usages

4.2.1 Expected System Behavior

• System call routines must validate application pointers before use.

4.2.2 Metal Checker Implementation

• Traverse through the code and mark all pointer variables.

• Unmark each pointer variables after an assignment or passed as an argument to a function
which expects an uninitialized pointer.

4.2.3 Deployment Observations

• Detected 18 errors in the exokernel.

• The lack of global semantics leads to false positives when the code implements an unique way
of verifying null pointers.

• Kernel backdoors leads to false positives as the checker assumes a universal approach.

4.3 Checking for Memory Allocation and Deallocation

4.3.1 Expected System Behavior

• Returned pointer of malloc must be checked before use.

• Cannot use deallocated memory.

• Always deallocate memory before exiting an execution.

• Memory allocated needs to be larger than the object.

4.3.2 Metal Checker Implementation

• Traverse the code and initialize each pointer variable to an unknown state.

• Checks for allocation, deallocation and freeing of each pointer variable and assign the states
not null, null and freed respectively.

• Errors are flagged when pointer variables in the null and freed states are used.

• Errors are flagged for each pointer variables in the not null state when code exits.

• Warnings are flagged when pointer variables in the freed state are deallocated.
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4.4 Global Analysis Extensions

4.4.1 Expected System Behavior

• The kernel will deadlock if a blocking function is called after interrupt disable or acquiring a
spinlock.

• A race condition is possible if a blocking function is called before the module’s reference count
is set properly during dynamic module loading.

4.4.2 Metal Checker Implementation

• Traverse the code and mark every potential blocking function.

• Generate flow graphs for each basic block while traversing the code.

• Generate a global call graph with the resultant flow graphs generated.

• Traverse the call graph and search for all functions that invokes a blocking a function directly
and indirectly.

4.4.3 Deadlock Metal Checker

• Initializes the state of all function calls to clean.

• Traverse the code and switch state to enable when it encounters a interrupt disable or spinlock
acquire. The state is switched to disable vice versa.

• Search the list of blocking functions before entering state enable or disable.

4.4.4 Deployment Observations

The deadlock checker is used to test Linux and 79 potential deadlocks are found. Local errors are
mainly caused by unawareness of the system behavior in inexperience developers. Global errors
(i.e., errors that affect the entire kernel) are caused by code traceability issues due to large code
size that developers have to verify. This also imply that it is desirable to have an automation tool
like meta-level compilation to check for errors if the code size is large.

4.5 Optimization Checker Implementation

The authors demonstrate the capability of meta-level compilation by extending their tool to improve
highly optimized FLASH machines’ cache coherence protocol. Checkers check for the following
items.

• Check for irredundant buffer spaces during message sending.

• Check for default buffer lengths that are larger than required.

• Check for duplicating message headers and recommend an XOR operation over consecutive
messages that can recycle the same header.
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4.5.1 Deployment Observations

Some of the potential optimizations will require a major code change. Potential errors might be
introduced if a developer who is unfamiliar with the code works on implementing them. This implies
that it depends on a situation whether a developer should choose to implement the recommendations
from the checker and a good bug to fix is probably one which is easily accessible and uncontroversial.

5 Coverity Commercialization Experiences

Coverity is a bug-finding tool based on the authors’ research. They commercialize this tool and
gain invaluable insights to the current attitude of the commercial world to performing code testing
using a 3rd-party bug-finding tool.

5.1 Reseach Versus Commercial

• In research context, a small number of programmers work on a single code base and program-
mers expects that errors in a code is inevitable.

• In the commercial context, a large number of programmers are required to work on a variety
of code bases and programmers assumes expected results from a 3rd-party bug-finder tool.

• In the commercial context, programmers are often ignorant to the code that they are testing.
Due to this lack of interest, confusing bugs flagged by the tool are often neglected and denoted
as a false positive.

5.2 Difficulty Faced by Coverity Developers

• Coverity developers have no access to the actual code for testing due to confidential reasons.

• Customers expect a different testing environment from Coverity.

• Coverity is subjected to variations in flavor, version compatibility, and proprietary compiler
extensions as customers often associate correct code with successful compilations.

• Coverity developers realize a huge variety of compiler variations in the commercial context
that it is almost an impossible task to support them all.

• It is critical to ensure that Coverity is bugs-free to eliminate false negatives.

5.3 Advices to Bug-Finding Tool Developers

• A hard-to-understand bug is not a good bug as it will lead to confusion and misinterpretation.

• Do not fix out-dated bugs that has already exist for a long time as it might introduce more
bugs.

• Modifications to Coverity should try to limit ”churn” in order to guarantee trust-worthiness
in the customers.
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6 Conclusion

Meta-level compilation poses a revolutionary approach to bug finding. Despite that this approach
does not guarantee 100% bugs-free, the easily scalable architecture has demonstrated commendable
results over existing complex systems like Linux, OpenBSD and Xok exokernel. However, the
commercialization of Coverity also impose very different expectations from the commercial context
on the tool. In my personal opinion, I feel that meta-level compilation is in the right direction of
creating a the next generation bug-finder tool due to the close coupling to unreachable large code
bases during compilation. However, the Metal high-level state-machine definition language still
requires quite a lot of system/code domain knowledge to create extensions/checkers. As a company
often has a dedicated testing and validation department to perform extensive tests, test cases are
often created based on marketing requirements which are often too high-level. Hence, this tool
might still require cross-departmental support from the research and development department to
define useful customized checkers pertaining to the system being tested.
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